Data caps and service degradation are techniques used to control subscribers' data consumption. These techniques have emerged mainly due to the growing demands placed on the networking stack created by the continuous increase in the number of connected users and their feature-rich, bandwidth-heavy Over-the-Top (OTT) applications. In the mobile network's scope, where traditional operators offer user data plans with limited resources, service degradation is a standard mechanism used to throttle consumption. Limiting user data usage helps to utilize resources better and to ensure the network's reliable performance. Nevertheless, this degradation is applied in a generalized way, affecting all user applications without considering behavior. In this paper, we propose a reference model aiming to address this constraint. Specifically, we attempt to personalize service degradation policies by providing a guideline for users' OTT consumption behavior classification based on Incremental Learning (IL). We evaluated our model's viability in a case study by investigating the efficacy of several IL algorithms on a dataset containing realworld users' OTT application consumption behavior. The algorithms include Naive Bayes (NB), K-Nearest Neighbor (KNN), Adaptive Random Forest (ARF), Leverage Bagging (LB), Oza Bagging (OB), Learn++, and Multilayer Perceptron (MLP). The obtained results show that ARF and a composition between LB and ARF achieve the best performance yielding a classification precision and recall of over 90%. Based on the obtained results, we propose service degradation policies to support decision making in missioncritical systems. We argue the strong applicability of our model in real-world scenarios, especially in user consumption profiling. Our reference model offers a conceptual basis for the tasks that need to be performed when defining personalized service degradation policies in current and future networks like 5G. To the best of our knowledge, this work is the first effort in this matter.
Over the past decade, the Internet of Things (IoT) has advanced rapidly. New technologies have been proposed and existing approaches optimised to meet user, society and industry requirements. However, as the complexity and heterogeneity of the traffic that flows through the networks are continuously growing, the innovation becomes difficult to achieve in both IoT and legacy networks. This article provides an overview of IoT application domains from a traffic characteristics perspective. Specifically, it identifies several groups of major IoT application use cases and discusses the exhibited traffic characteristics, used network technologies for implementation, and their feasibility as well as challenges. We stress that a key factor in future IoT development is network technologies and the way they handle and forward network traffic. The traffic characteristics emerging from this work can serve as a basis for future design proposals to develop more efficient solutions and improve the network technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.