The fixed-geometry valve micropump is a seemingly simple device in which the interaction between mechanical, electrical, and fluidic components produces a maximum output near resonance. This type of pump offers advantages such as scalability, durability, and ease of fabrication in a variety of materials. Our past work focused on the development of a linear dynamic model for pump design based on maximizing resonance, while little has been done to improve valve shape. Here we present a method for optimizing valve shape using two-dimensional computational fluid dynamics in conjunction with an optimization procedure. A Tesla-type valve was optimized using a set of six independent, non-dimensional geometric design variables. The result was a 25% higher ratio of reverse to forward flow resistance (diodicity) averaged over the Reynolds number range 0 Ͻ Reഛ 2000 compared to calculated values for an empirically designed, commonly used Tesla-type valve shape. The optimized shape was realized with no increase in forward flow resistance. A linear dynamic model, modified to include a number of effects that limit pump performance such as cavitation, was used to design pumps based on the new valve. Prototype plastic pumps were fabricated and tested. Steady-flow tests verified the predicted improvement in diodicity. More importantly, the modest increase in diodicity resulted in measured block-load pressure and no-load flow three times higher compared to an identical pump with non-optimized valves. The large performance increase observed demonstrated the importance of valve shape optimization in the overall design process for fixed-valve micropumps.
Two frequently used geometries for fixed-valve micropumps are the nozzle-diffuser and Tesla-type valve. However, little work has been done to investigate the relative merits of optimal shapes for each type of valve. In this study 2D steady-state computational fluid dynamics coupled with a formal optimization procedure and experimental evaluation were performed to address this problem. Non-dimensionalization of the problem allowed a comparison of the two valve types independent of physical size, i.e. shape alone was studied. Optimal shapes were found based on maximizing calculated diodicity as a function of Reynolds number in conjunction with a weighting function used to control forward pressure drop. The optimal shape for each valve was then compared numerically and experimentally to reference valves similar to those reported in the literature. The optimal shape for each valve type was found to be significantly different from the reference shape and exhibited significantly improved performance. Both valve types achieved a maximum diodicity of approximately two in the range of Reynolds number 0 ≤ Re ≤ 2000. The optimal Tesla-type valve was characterized by a large return loop and shallow return loop angle. The optimal nozzle-diffuser was characterized by a very long diffuser section that prevented flow separation in the forward flow direction along with increased wall shear stress in the reverse flow direction. The diodicity vs Reynolds number curve for the Tesla-type valve monotonically increased, while the nozzle-diffuser exhibited a local maximum in the mid-Reynolds number range. These characteristics may play an important role when valve size is determined to maximize resonant behavior of a micropump. Thus they influence numerous pump design criteria such as target flow rate-pressure characteristics and overall pump size.
The fixed-geometry valve micropump is a seemingly simple device in which the interaction between mechanical, electrical, and fluidic components produces a maximum pump output near resonance. This type of pump offers advantages such as scalability, durability, and simplicity of fabrication in a variety of materials. Past work has focused on the development of a predictive linear dynamic model for pump design, while little has been done to improve valve shape. Here we present a process to optimize valve shape using 2D computational fluid dynamics in conjunction with an optimization algorithm. The calculated valve diodicity was maximized by manipulating six independent, non-dimensional geometric variables for a Tesla-type valve. The resulting optimally shaped valve had a 25% increase in calculated diodicity averaged over the Reynolds number range [0, 2000] compared to a non-optimized Tesla-type valve. Overall pump design was investigated by sizing the optimized Tesla valve shape in relation to all other parameters in linear dynamic model that was modified to include the effects of cavitation and other limiting factors. Four pump prototypes were fabricated in acrylic and polycarbonate using numerical-control machining techniques and miniature end mills. Testing demonstrated that a pump with the optimal shape produced nearly three times the performance of the same pump with a non-optimized valve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.