Human cytomegalovirus (HCMV) infects about 50% of the US population, is the leading infectious cause of birth defects, and is considered the most important infectious agent in transplant recipients. The virus infects many cell types in vivo and in vitro. While previous studies have identified several cellular proteins that may function at early steps of infection in a cell type dependent manner, the mechanism of virus entry is still poorly understood. Using a computational biology approach, correlating gene expression with virus infectivity in 54 cell lines, we identified THY-1 as a putative host determinant for HCMV infection in these cells. With a series of loss-of-function, gain-of-function and protein-protein interaction analyses, we found that THY-1 mediates HCMV infection at the entry step and is important for infection that occurs at a low m.o.i. THY-1 antibody that bound to the cell surface blocked HCMV during the initial 60 minutes of infection in a dose-dependent manner. Down-regulation of THY-1 with siRNA impaired infectivity occurred during the initial 60 minutes of inoculation. Both THY-1 antibody and siRNA inhibited HCMV-induced activation of the PI3-K/Akt pathway required for entry. Soluble THY-1 protein blocked HCMV infection during, but not after, virus internalization. Expression of exogenous THY-1 enhanced entry in cells expressing low levels of the protein. THY-1 interacted with HCMV gB and gH and may form a complex important for entry. However, since gB and gH have previously been shown to interact, it is uncertain if THY-1 directly binds to both of these proteins. Prior observations that THY-1 (a) interacts with αVβ3 integrin and recruits paxillin (implicated in HCMV entry), (b) regulates leukocyte extravasation (critical for HCMV viremia), and (c) is expressed on many cells targeted for HCMV infection including epithelial and endothelial cells, fibroblast, and CD34+/CD38- stem cells, all support a role for THY-1 as an HCMV entry mediator in a cell type dependent manner. THY-1 may function through a complex setting, that would include viral gB and gH, and other cellular factors, thus links virus entry with signaling in host cells that ultimately leads to virus infection.
Herpesviruses, like most DNA viruses, replicate and package their genomes into capsids in the host cell nucleus. Capsids then transit to the cytoplasm in a fascinating process called nuclear egress, which includes several unusual steps: Movement of capsids from the nuclear interior to the periphery, disruption of the nuclear lamina, capsid budding through the inner nuclear membrane, and fusion of enveloped particles with the outer nuclear membrane. Here, we review recent advances and emerging questions relating to herpesvirus nuclear egress, emphasizing controversies regarding mechanisms for capsid trafficking to the nuclear periphery, and implications of recent structures of the two-subunit, viral nuclear egress complex for the process, particularly at the step of budding through the inner nuclear membrane.
Herpesviruses, which include important pathogens, remodel the host cell nucleus to facilitate infection. This remodeling includes the formation of structures called replication compartments (RCs) in which herpesviruses replicate their DNA. During infection with the betaherpesvirus, human cytomegalovirus (HCMV), viral DNA synthesis occurs at the periphery of RCs within the nuclear interior, after which assembled capsids must reach the inner nuclear membrane (INM) for translocation to the cytoplasm (nuclear egress). The processes that facilitate movement of HCMV capsids to the INM during nuclear egress are unknown. Although an actin-based mechanism of alphaherpesvirus capsid trafficking to the INM has been proposed, it is controversial. Here, using a fluorescently-tagged, nucleus-localized actin-binding peptide, we show that HCMV, but not herpes simplex virus 1, strongly induced nuclear actin filaments (F-actin) in human fibroblasts. Based on studies using UV inactivation and inhibitors, this induction depended on viral gene expression. Interestingly, by 24 h postinfection, nuclear F-actin formed thicker structures that appeared by super-resolution microscopy to be bundles of filaments. Later in infection, nuclear F-actin primarily localized along the RC periphery and between the RC periphery and the nuclear rim. Importantly, a drug that depolymerized nuclear F-actin caused defects in production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization near the nuclear rim, without decreasing capsid accumulation in the nucleus. Thus, our results suggest that for at least one herpesvirus, nuclear F-actin promotes capsid movement to the nuclear periphery and nuclear egress. We discuss our results in terms of competing models for these processes.
Host range (HR) mutants of simian virus 40 (SV40) containing mutations in the C terminus of large T antigen fail to replicate efficiently or form plaques in restrictive cell types. HR mutant viruses exhibit impairments at several stages of the viral life cycle, including early and late gene and protein expression, DNA replication, and virion assembly, although the underlying mechanism for these defects is unknown. Host protein FAM111A, whose depletion rescues early and late gene expression and plaque formation for SV40 HR viruses, has been shown to play a role in cellular DNA replication. SV40 viral DNA replication occurs in the nucleus of infected cells in viral replication centers where viral proteins and cellular replication factors localize. Here, we examined the role of viral replication center formation and DNA replication in the FAM111A-mediated HR phenotype. We found that SV40 HR virus rarely formed viral replication centers in restrictive cells, a phenotype that could be rescued by FAM111A depletion. Furthermore, while FAM111A localized to nucleoli in uninfected cells in a cell cycle-dependent manner, FAM111A relocalized to viral replication centers after infection with SV40 wild-type or HR viruses. We also found that inhibition of viral DNA replication through aphidicolin treatment or through the use of replication-defective SV40 mutants diminished the effects of FAM111A depletion on viral gene expression. These results indicate that FAM111A restricts SV40 HR viral replication center formation and that viral DNA replication contributes to the FAM111A-mediated effect on early gene expression.IMPORTANCESV40 has served as a powerful tool for understanding fundamental viral and cellular processes; however, despite extensive study, the SV40 HR mutant phenotype remains poorly understood. Mutations in the C terminus of large T antigen that disrupt binding to the host protein FAM111A render SV40 HR viruses unable to replicate in restrictive cell types. Our work reveals a defect of HR mutant viruses in the formation of viral replication centers that can be rescued by depletion of FAM111A. Furthermore, inhibition of viral DNA replication reduces the effects of FAM111A restriction on viral gene expression. Additionally, FAM111A is a poorly characterized cellular protein whose mutation leads to two severe human syndromes, Kenny-Caffey syndrome and osteocraniostenosis. Our findings regarding the role of FAM111A in restricting viral replication and its localization to nucleoli and viral replication centers provide further insight into FAM111A function that could help reveal the underlying disease-associated mechanisms.
Key Points Mouse megakaryocytes can differentially sort and package endocytosed fibrinogen and endostatin into distinct α-granules. Platelet progenitors contain subpopulations of α-granules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.