Immunological methods to detect SARS-CoV-2 seroconversion in humans are important to track COVID-19 cases and the humoral response to SARS-CoV-2 infections and immunization to future vaccines. The aim of this work was to develop a simple chromogenic magnetic bead-based immunoassay which allows rapid, inexpensive, and quantitative detection of human antibodies against SARS-CoV-2 in serum, plasma, or blood. Recombinant 6xHis-tagged SARS-CoV-2 Nucleocapsid protein was mobilized on the surface of Ni 2+ magnetic beads and challenged with serum or blood samples obtained from controls or COVID-19 cases. The beads were washed, incubated with anti-human IgG-HPR conjugate, and immersed into a solution containing a chromogenic HPR substrate. Bead transfer and homogenization between solutions was aided by a simple low-cost device. The method was validated by two independent laboratories, and the performance to detect SARS-CoV-2 seroconversion in humans was in the same range as obtained using the gold standard immunoassays ELISA and Luminex, though requiring only a fraction of consumables, instrumentation, time to deliver results, and volume of sample. Furthermore, the results obtained with the method described can be visually interpreted without compromising accuracy as demonstrated by validation at a point-of-care unit. The magnetic bead immunoassay throughput can be customized on demand and is readily adapted to be used with any other 6xHis tagged protein or peptide as antigen to track other diseases.
The epithelial-mesenchymal transition (EMT) is a crucial process in tumour progression, by which epithelial cells acquire a mesenchymal phenotype, increasing its motility and the ability to invade distant sites. Here, we describe the molecular mechanisms by which BRAF, TGFβ and the Src/FAK complex cooperatively regulate EMT induction and cell motility of anaplastic thyroid cancer cells. Analysis of EMT marker levels reveals a positive correlation between TGFβ and Snail expression, with a concomitant downregulation of E-cadherin, accompanied by an increase of cell migration and invasion. Furthermore, we show that BRAF depletion by siRNA or inhibition of its activity by treatment with its inhibitor PLX4720 reverses the TGFβ-mediated effects on Snail, E-cadherin, migration and invasion. Moreover, BRAF induces TGFβ secretion through a MEK/ERK-dependent mechanism. In addition, TGFβ activates the Src/FAK complex, which in turn regulates the expression of Snail and E-cadherin as well as cell migration. The inhibition of Src with the inhibitor SU6656 or abrogation of FAK expression with a specific siRNA reverses the TGFβ-induced effects. Interestingly, we demonstrate that activation of the Src/FAK complex by TGFβ is independent of BRAF signalling, since inhibition of this oncogene does not affect its phosphorylation. Our data strongly suggest that TGFβ induces EMT and aggressiveness of thyroid cancer cells by parallel mechanisms involving both the BRAF/MEK/ERK and Src/FAK pathways independently. Thus, we describe novel functions for Src/FAK in mediating the EMT program and aggressiveness regulated by TGFβ, establishing the inhibition of these proteins as a possible effective approach in preventing tumour progression of BRAF-expressing thyroid tumours. © 2015 Wiley Periodicals, Inc.
NADH (NAD) and its reduced form NADH serve as cofactors for a variety of oxidoreductases that participate in many metabolic pathways. NAD also is used as substrate by ADP-ribosyl transferases and by sirtuins. NAD biosynthesis is one of the most fundamental biochemical pathways in nature, and the ubiquitous NAD synthetase (NadE) catalyzes the final step in this biosynthetic route. Two different classes of NadE have been described to date: dimeric single-domain ammonium-dependent NadE and octameric glutamine-dependent NadE, and the presence of multiple NadE isoforms is relatively common in prokaryotes. Here, we identified a novel dimeric group of NadE in bacteria. Substrate preferences and structural analyses suggested that dimeric NadE enzymes may constitute evolutionary intermediates between dimeric NadE and octameric NadE The characterization of additional NadE isoforms in the diazotrophic bacterium along with the determination of intracellular glutamine levels in response to an ammonium shock led us to propose a model in which these different NadE isoforms became active accordingly to the availability of nitrogen. These data may explain the selective pressures that support the coexistence of multiple isoforms of NadE in some prokaryotes.
The PII family comprises a group of widely distributed signal transduction proteins ubiquitous in prokaryotes and in the chloroplasts of plants. PII proteins sense the levels of key metabolites ATP, ADP, and 2-oxoglutarate, which affect the PII protein structure and thereby the ability of PII to interact with a range of target proteins. Here, we performed multiple ligand fishing assays with the PII protein orthologue GlnZ from the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense to identify 37 proteins that are likely to be part of the PII protein-protein interaction network. Among the PII targets identified were enzymes related to nitrogen and fatty acid metabolism, signaling, coenzyme synthesis, RNA catabolism, and transcription. Direct binary PII-target complex was confirmed for 15 protein complexes using pulldown assays with recombinant proteins. Untargeted metabolome analysis showed that PII is required for proper homeostasis of important metabolites. Two enzymes involved in c-di-GMP metabolism were among the identified PII targets. A PII-deficient strain showed reduced c-di-GMP levels and altered aerotaxis and flocculation behavior. These data support that PII acts as a major metabolic hub controlling important enzymes and the homeostasis of key metabolites such as c-di-GMP in response to the prevailing nutritional status. IMPORTANCE The PII proteins sense and integrate important metabolic signals which reflect the cellular nutrition and energy status. Such extraordinary ability was capitalized by nature in such a way that the various PII proteins regulate different facets of metabolism by controlling the activity of a range of target proteins by protein-protein interactions. Here, we determined the PII protein interaction network in the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense. The interactome data along with metabolome analysis suggest that PII functions as a master metabolic regulator hub. We provide evidence that PII proteins act to regulate c-di-GMP levels in vivo and cell motility and adherence behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.