Abstract. This work focuses on the in-depth reconstruction of the full set of parameters of interest in single-block rockfall trajectories. A comprehensive understanding of rockfall trajectories holds the promise to enhance the application of numerical models for engineering hazard analysis. Such knowledge is equally important to investigate wider cascade problems in steep terrain. Here, we present a full four-dimensional trajectory reconstruction of the “Chant Sura” rockfall experiment performed with EOTA221 norm rocks. The data analysis allows a complete kinematic description of a rock's trajectory in real terrain and underscores the physical complexity of rock–ground interactions. In situ accelerometer and gyroscope data are combined with videogrammetric and unmanned aerial-systems mapping techniques to understand the role of rock rotations, ground penetration and translational scarring in rockfall motion. The exhaustive trajectory reconstruction provides information over the complete flight path such as translational velocity vectors, angular velocities, impact duration and forces, ballistic jump heights, and lengths. The experimental data provide insight into the basic physical processes detailing how rotating rocks of general shape penetrate, rebound and scar ground terrain. In future, the data will serve as a calibration basis to enhance numerical rockfall modelling.
The mitigation of rapid mass movements involves a subtle interplay between field surveys, numerical modelling, and experience. Hazard engineers rely on a combination of best practices and, if available, historical facts as a vital prerequisite in establishing reproducible and accurate hazard zoning. Full-scale field tests have been performed to reinforce the physical understanding of debris flows and snow avalanches. Rockfall dynamics are - especially the quantification of energy dissipation during the complex rock-ground interaction - largely unknown. The awareness of rock shape dependence is growing, but presently, there exists little experimental basis on how rockfall hazard scales with rock mass, size, and shape. Here, we present a unique data set of induced single-block rockfall events comprising data from equant and wheel-shaped blocks with masses up to 2670 kg, quantifying the influence of rock shape and mass on lateral spreading and longitudinal runout and hence challenging common practices in rockfall hazard assessment.
Does rock shape matter to the mitigation effects of trees on rockfall hazards? This question must be resolved in order to better quantify the protective role of mountain forests against rockfall. To probe this question we investigate a single rock-tree interaction using non-smooth, hard-contact mechanics that allows us to consider rock shape at impact. The interaction of equant shaped rocks with cylinder-like tree stems is modelled. The equant shaped rocks are close to spherical but have a certain shape variability governed by the rock's surface area ratio and aspect ratio. This work serves as an important follow-up study to the existing investigations from Toe et al. (Landslides 14: 1603(Landslides 14: -1614(Landslides 14: , 2017, where the effects of trees on block propagation are numerically investigated using spherical shaped rocks. The objective of our simulations is to understand how and to what extent, shape will influence energy dissipation and trajectory change. The primary results include: surface area ratio plays a more important role than aspect ratio in determining the rock's post-impact dynamics. The primary parameters governing the rock kinematics after impact (i.e. block's energy reduction, reflected rotational
Abstract. Forests are rockfall-protective ecological infrastructures, as a significant amount of kinetic energy is absorbed during consecutive rock-tree impacts. Although many recent works have considered rock impacts with standing trees, the effect of lying deadwood in forests has not yet been considered thoroughly, either experimentally or numerically. Here, we present a complete examination of induced rockfall experiments on a forested area in three different management stages. The trilogy is conducted in a spruce forest stand (i) in its original state, (ii) after a logging operation with fresh, lying deadwood and (iii) after the removal of the deadwood. The tests allow us to directly quantify the effect of fresh deadwood on overall rockfall risk for the same forest (slope, species) under three different conditions. The study yields quantitative results on the barrier efficiency of the deadwood logs as only 3.6 % of the rocks surpass the deadwood section. The mean runout distance is reduced by 42 %. Conversely, the runout distance increases by 17 % when the cleared stand is compared to the original forest. These results quantitatively confirm the benefits of nature-based mitigation measures integrated into forestry practice and we show how modern rockfall codes can be extended to incorporate such complex, but realistic forest boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.