World population is expected to reach 9.2 × 109 people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a ‘saline agriculture’ which will not compete in terms of resources with conventional agriculture.
The need to boost agricultural production in the coming decades in a climate change scenario requires new approaches for the development of new crop varieties that are more resilient and more efficient in the use of resources. Crop wild relatives (CWRs) are a source of variation for many traits of interest in breeding, in particular tolerance to abiotic and biotic stresses. However, their potential in plant breeding has largely remained unexploited. CWRs can make an effective contribution to broadening the genetic base of crops and to introgressing traits of interest, but their direct use by breeders in breeding programs is usually not feasible due to the presence of undesirable traits in CWRs (linkage drag) and frequent breeding barriers with the crop. Here we call for a new approach, which we tentatively call 'introgressiomics', which consists of mass scale development of plant materials and populations with introgressions from CWRs into the genetic background of crops. Introgressiomics is a form of
Volatile constituents of ripe fruits of 16 Capsicum accessions from the annuum-chinense-frutescens complex, with different aroma impressions and geographical origins, were isolated by headspace-solid phase microextraction (HS-SPME) and analyzed by gas chromatography-olfactometry-mass spectrometry (GC-sniffing port-MS). More than 300 individual compounds could be detected in the studied genotypes; most of them could be identified by comparing mass spectra and retention times with authentic reference substances or literature data. Esters and terpenoids were the main groups, although other minor compounds, such as nitrogen and sulfur compounds, phenol derivatives, norcarotenoids, lipoxygenase derivatives, carbonyls, alcohols, and other hydrocarbons, were also identified. The sniffing test revealed that the diversity of aromas found among the studied cultivars is due to qualitative and quantitative differences of, at least, 23 odor-contributing volatiles (OCVs). C. chinense, and C. frutescens accessions, with fruity/exotic aromas, were characterized by a high contribution of several esters and ionones and a low or nil contribution of green/vegetable OCVs. Different combinations of fruity/exotic and green/vegetable OCVs would explain the range of aroma impressions found among C. annuum accessions. Implications of these findings for breeding and phylogeny studies in Capsicum are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.