In contrast to static objects, liquid structures such as drops, blobs, as well as waves and ripples on water surfaces are challenging to image in 3D due to two main reasons: first, the transient nature of those phenomena requires snapshot imaging that is fast enough to freeze the motion of the liquid. Second, the transparency of liquids and the specular reflections from their surfaces induce complex image artefacts. In this article we present a novel imaging approach to reconstruct in 3D the surface of irregular liquid structures that only requires a single snapshot. The technique is named Fringe Projection-Laser Induced Fluorescence (FP-LIF) and uses a high concentration of fluorescent dye in the probed liquid. By exciting this dye with a fringe projection structured laser beam, fluorescence is generated primarily at the liquid surface and imaged at a backward angle. By analysing the deformation of the initial projected fringes using phase-demodulation image post-processing, the 3D coordinates of the liquid surface are deduced. In this article, the approach is first numerically tested by considering a simulated pending drop, in order to analyse its performance. Then, FP-LIF is applied for two experimental cases: a quasi-static pending drop as well as a transient liquid sheet. We demonstrate reconstruction RMS errors of 1.4% and 6.1% for the simulated and experimental cases respectively. The technique presented here demonstrates, for the first time, a fringe projection approach based on LIF detection to reconstruct liquid surfaces in 3D. FP-LIF is promising for the study of more complex liquid structures and is paving the way for high-speed 3D videography of liquid surfaces.
SARS‐CoV‐2 and its ever‐emerging variants are spread from host‐to‐host via expelled respiratory aerosols and saliva droplets. Knowing the number of virions which are exhaled by a person requires precise measurements of the size, count, velocity and trajectory of the virus‐laden particles that are ejected directly from the mouth. These measurements are achieved in 3D, at 15,000 images/s, and are applied when speaking, yelling and coughing. In this study, 33 events have been analysed by post‐processing ∼500,000 images. Using these data, the flow rates of SARS‐CoV‐2 virions have been evaluated. At high concentrations, 107 virions/mL, it is found that 136–231 virions are ejected during a single cough, where the virion flow rate peak is capable of reaching 32 virions within a millisecond. This peak can reach tens of virions/ms when yelling but reduced to only a few virions/ms when speaking. At medium concentrations, ∼105 virions/mL, those results are hundreds of times lower. The total number of virions that are ejected when yelling at 110 dB, instead of speaking at 85 dB, increases by two‐ to threefold. From the measured data analysed in this article, the flow rate of other diseases, such as influenza, tuberculosis or measles, can also be estimated. As these data are openly accessible, they can be used by modellers for the simulation of saliva droplet transport and evaporation, allowing to further advance our understanding of airborne pathogen transmission.Key points Advanced, optimized and combined laser‐based imaging techniques for temporally sizing and tracking respiratory droplets and aerosols. Understanding how pathogens are being ejected from the mouth when speaking, yelling and coughing. Quantifying and analysing the variation of SARS‐CoV‐2 flow rates emission during exhalation.
Schlieren photography is widely used for visualizing phenomena within transparent media. The technique, which comes in a variety of configurations, is based on detecting or extracting the degree to which light is deflected whilst propagating through a sample. To date, high-speed schlieren videography can only be achieved using high-speed cameras, thus limiting the frame rate of such configurations to the capabilities of the camera. Here we demonstrate, for the first time, optically multiplexed schlieren videography, a concept that allows such hardware limitations to be bypassed, opening up for, in principle, an unlimited frame rate. By illuminating the sample with a rapid burst of uniquely spatially modulated light pulses, a temporally resolved sequence can be captured in a single photograph. The refractive index variations are thereafter measured by quantifying the local phase shift of the superimposed intensity modulations. The presented results demonstrate the ability to acquire a series of images of flame structures at frame rates up to 1 Mfps using a standard 50 fps sCMOS camera.
SARS-CoV-2 and its ever-emerging variants, are spread from host-to-host via expelled respiratory aerosols and saliva droplets. Knowing the number of virions which are exhaled by a person requires precise measurements of the size, count, velocity and trajectory of the virus-laden particles that are ejected directly from the mouth. These measurements are achieved in 3D, at 15000 images/second, and are applied when speaking, yelling, and coughing. In this study 33 events have been analysed by post-processing ~500000 images. Using these data, the flow rate of SARS-CoV-2 virions have been evaluated. At high concentrations, 10^7 virions/mL, it is found that 136 to 231 virions are ejected during a single cough, where the virion flow rate peak is capable of reaching 32 virions within a millisecond. This peak can reach tens of virions/ms when yelling, but reduced to only a few virions/ms when speaking. At medium concentrations, ~10^5 virions/mL, those results are hundreds of times lower. The total number of virions that are ejected when yelling at 110db, instead of speaking at 85db, increases by two to three fold. From the measured data analysed in this article, the flow rate of other diseases such as influenza, tuberculosis or measles, can also be estimated. As these data are openly accessible, they can be used by modellers for the simulation of saliva droplet transport and evaporation, allowing to further advance our understanding of airborne pathogen transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.