When a granular material such as sand is mixed with a certain amount of liquid, the surface tension of the latter bestows considerable stiffness to the material, which enables, for example, sand castles to be sculpted. The geometry of the liquid interface within the granular pile is of extraordinary complexity and strongly varies with the liquid content. Surprisingly, the mechanical properties of the pile are largely independent of the amount of liquid over a wide range. We resolve this puzzle with the help of X-ray microtomography, showing that the remarkable insensitivity of the mechanical properties to the liquid content is due to the particular organization of the liquid in the pile into open structures. For spherical grains, a simple geometric rule is established, which relates the macroscopic properties to the internal liquid morphologies. We present evidence that this concept is also valid for systems with non-spherical grains. Hence, our results provide new insight towards understanding the complex physics of a large variety of wet granular systems including land slides, as well as mixing and agglomeration problems.
Easier access to X-ray microtomography (lCT) facilities has provided much new insight from high-resolution imaging for various problems in porous media research. Pore space analysis with respect to functional properties usually requires segmentation of the intensity data into different classes. Image segmentation is a nontrivial problem that may have a profound impact on all subsequent image analyses. This review deals with two issues that are neglected in most of the recent studies on image segmentation: (i) focus on multiclass segmentation and (ii) detailed descriptions as to why a specific method may fail together with strategies for preventing the failure by applying suitable image enhancement prior to segmentation. In this way, the presented algorithms become very robust and are less prone to operator bias. Three different test images are examined: a synthetic image with ground-truth information, a synchrotron image of precision beads with three different fluids residing in the pore space, and a lCT image of a soil sample containing macropores, rocks, organic matter, and the soil matrix. Image blur is identified as the major cause for poor segmentation results. Other impairments of the raw data like noise, ring artifacts, and intensity variation can be removed with current image enhancement methods. Bayesian Markov random field segmentation, watershed segmentation, and converging active contours are well suited for multiclass segmentation, yet with different success to correct for partial volume effects and conserve small image features simultaneously.
We present an algorithm for determining the Morse complex of a two or three-dimensional grayscale digital image. Each cell in the Morse complex corresponds to a topological change in the level sets (i.e., a critical point) of the grayscale image. Since more than one critical point may be associated with a single image voxel, we model digital images by cubical complexes. A new homotopic algorithm is used to construct a discrete Morse function on the cubical complex that agrees with the digital image and has exactly the number and type of critical cells necessary to characterize the topological changes in the level sets. We make use of discrete Morse theory and simple homotopy theory to prove correctness of this algorithm. The resulting Morse complex is considerably simpler than the cubical complex originally used to represent the image and may be used to compute persistent homology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.