Impaired kidney function and chronic kidney disease (CKD) leading to kidney failure and end-stage renal disease (ESRD) is a serious medical condition associated with increased morbidity, mortality, and in particular cardiovascular disease (CVD) risk. CKD is associated with multiple physiological and metabolic disturbances, including hypertension, dyslipidemia and the anorexia-cachexia syndrome which are linked to poor outcomes. Specific hormonal, inflammatory, and nutritional-metabolic factors may play key roles in CKD development and pathogenesis. These include raised proinflammatory cytokines, such as interleukin-1 and −6, tumor necrosis factor, altered hepatic acute phase proteins, including reduced albumin, increased C-reactive protein, and perturbations in normal anabolic hormone responses with reduced growth hormone-insulin-like growth factor-1 axis activity. Others include hyperactivation of the renin-angiotensin aldosterone system (RAAS), with angiotensin II and aldosterone implicated in hypertension and the promotion of insulin resistance, and subsequent pharmacological blockade shown to improve blood pressure, metabolic control and offer reno-protective effects. Abnormal adipocytokine levels including leptin and adiponectin may further promote the insulin resistant, and proinflammatory state in CKD. Ghrelin may be also implicated and controversial studies suggest activities may be reduced in human CKD, and may provide a rationale for administration of acyl-ghrelin. Poor vitamin D status has also been associated with patient outcome and CVD risk and may indicate a role for supplementation. Glucocorticoid activities traditionally known for their involvement in the pathogenesis of a number of disease states are increased and may be implicated in CKD-associated hypertension, insulin resistance, diabetes risk and cachexia, both directly and indirectly through effects on other systems including activation of the mineralcorticoid receptor. Insight into the multiple factors altered in CKD may provide useful information on disease pathogenesis, clinical assessment and treatment rationale such as potential pharmacological, nutritional and exercise therapies.
Haemodialysis (HD) patients suffer from nutritional problems, which include muscle wasting, weakness, and cachexia, and are associated with poor clinical outcomes. The European Working Group for Sarcopenia in Older People (EWGSOP) and Foundations for the National Institute of Health (FNIH) have developed criteria for the assessment of sarcopenia, including the use of non-invasive techniques such as Bioelectrical Impedance Analysis (BIA), anthropometry, and Hand Grip Strength (HGS) dynamometry. This study investigated the prevalence of muscle wasting, weakness, and sarcopenia using the EWGSOP and FNIH criteria. BIA was performed in 24 females (f) and 63 males (m) in the post-dialysis period. Total skeletal muscle mass (TSMM) and appendicular skeletal muscle mass (ASMM) were estimated and index values (i.e., muscle mass divided by height 2 [kg/m 2 ]) were calculated (Total Skeletal Muscle Index (TSMI) and Appendicular Skeletal Muscle Index (ASMI)). Mid-arm circumference and triceps skin-fold thickness were measured and mid-upper arm muscle circumference (MUAMC) calculated. HGS was measured using a standard protocol and Jamar dynamometer. Suggested cut-points for low muscle mass and HGS were utilized from EWGSOP and FNIH criteria, with prevalence estimated, including sarcopenia. The prevalence varied depending on methodology: low TSMI (moderate and severe sarcopenia combined) was 55% for whole group: 21% (f) and 68% (m). Low ASMI was 32% for whole group: 25% (f) and 35% (m). Low MUAMC was 25% for whole group: 0% (f) and 30% (m). ASMI highly correlated with body mass index (BMI) (r = 0.78, P < .001) and MUAMC (r = 0.68, P < .001). Muscle weakness was high regardless of cut-points used (50-71% (f); 60-79% (m)). Internationally, this is the first study comparing measures of muscle mass (TSMM and ASMM by BIA and MUAMC) and muscle strength (HGS) using this specific methodology in a haemodialysis population. Future work is required to confirm findings.
Malnutrition is common in heart failure (HF), and it is associated with higher hospital readmission and mortality rates. This review aims to answer the question whether nutritional interventions aiming to increase protein and energy intake are effective at improving outcomes for patients with HF who are malnourished or at risk of malnutrition or cachexia. Systematic searches of four databases (Medline, Embase, CINAHL and Cochrane Central Register of Controlled Trials (CENTRAL)) were conducted on 21 June 2019. Randomized controlled trials (RCTs) or other interventional studies using protein or energy supplementation for adult HF patients who are malnourished or at risk of malnutrition or cachexia were included. Two independent reviewers assessed study eligibility and risk of bias. Five studies (four RCTs and one pilot RCT) met the inclusion criteria. The majority of studies were small and of limited quality. The pooled weighted mean difference (WMD) for body weight showed a benefit from the nutritional intervention by 3.83 kg (95% confidence interval (CI) 0.17 to 7.50, P = 0.04) from three trials with no significant benefit for triceps skinfold thickness (WMD = − 2.14 mm, 95% CI − 9.07 to 4.79, P = 0.55) from two trials. The combination of personalized nutrition intervention with conventional treatment led to a decrease in all-cause mortality and hospital readmission in one study. Findings of this review suggest that nutritional interventions could potentially improve outcomes in HF patients who are malnourished or at risk of malnutrition. However, the strength of the evidence is poor, and more robust studies with a larger number of participants are needed.
ObjectiveBioelectrical impedance vector analysis (BIVA) and phase angle (PA) have been shown previously to indicate relative nutritional status in patients. The aim of this study was to investigate the application of BIVA and PA assessments in a cohort of frail older hospital patients and compare these assessments with malnutrition risk screening by MUST (Malnutrition Universal Screening Tool), and the MNA-SF® (Mini-Nutritional Assessment-Short Form). MethodsSixty-nine patients (n = 44 men; n = 25 women; age 82.1 ± 7.6 y [range 62-96 y]; body mass index 25.8 ± 5.4 kg/m2 [range 16.6-45.1 kg/m2]) were recruited from hospital wards specializing in the care of frail older individuals from the United Kingdom. Bioelectrical impedance assessment was performed at 50 khz frequency, BIVA was performed using raw impedance data, PA was calculated, and data were compared against reference population groups. Patients were categorized by malnutrition risk by MUST and MNA-SF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.