Ad-hoc networks of mobile devices such as smart phones and PDAs represent a new and exciting distributed system architecture. Building distributed applications on such an architecture poses new design challenges in programming models, languages, compilers, and runtime systems. This paper discusses SpatialViews, a high-level language designed for programming mobile devices connected through a wireless ad-hoc network. SpatialViews allows specification of virtual networks with nodes providing desired services and residing in interesting spaces. These nodes are discovered dynamically with user-specified time constraints and quality of result (QoR). The programming model supports "best-effort" semantics, i.e., different executions of the same program may result in "correct" answers of different quality. It is the responsibility of the compiler and runtime system to produce a high-quality answer for the particular network and resource conditions encountered during program execution. Four applications, which exercise different features of the SpatialViews language, are presented to demonstrate the expressiveness of the language and the efficiency of the compiler generated code. The applications are an application that collects and aggregates sensor data in network, an application that performs dynamic service installation, a mobile camera application that supports computation offloading for image understanding, and an augmented-reality (AR) Pacman game. The efficiency of the compiler generated code is verified through simulation and physical measurements. The reported results show that SpatialViews is an expressive and effective language for ad-hoc networks. In addition, compiler optimizations can significantly improve response times and energy consumption.
Ad-hoc networks of mobile devices such as smart phones and PDAs represent a new and exciting distributed system architecture. Building distributed applications on such an architecture poses new design challenges in programming models, languages, compilers, and runtime systems. This paper discusses SpatialViews, a high-level language designed for programming mobile devices connected through a wireless ad-hoc network. SpatialViews allows specification of virtual networks with nodes providing desired services and residing in interesting spaces. These nodes are discovered dynamically with user-specified time constraints and quality of result (QoR). The programming model supports "best-effort" semantics, i.e., different executions of the same program may result in "correct" answers of different quality. It is the responsibility of the compiler and runtime system to produce a high-quality answer for the particular network and resource conditions encountered during program execution. Four applications, which exercise different features of the SpatialViews language, are presented to demonstrate the expressiveness of the language and the efficiency of the compiler generated code. The applications are an application that collects and aggregates sensor data in network, an application that performs dynamic service installation, a mobile camera application that supports computation offloading for image understanding, and an augmented-reality (AR) Pacman game. The efficiency of the compiler generated code is verified through simulation and physical measurements. The reported results show that SpatialViews is an expressive and effective language for ad-hoc networks. In addition, compiler optimizations can significantly improve response times and energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.