We achieve tunneling spin injection from Co into single layer graphene (SLG) using TiO₂ seeded MgO barriers. A nonlocal magnetoresistance (ΔR(NL)) of 130 Ω is observed at room temperature, which is the largest value observed in any material. Investigating ΔR(NL) vs SLG conductivity from the transparent to the tunneling contact regimes demonstrates the contrasting behaviors predicted by the drift-diffusion theory of spin transport. Furthermore, tunnel barriers reduce the contact-induced spin relaxation and are therefore important for future investigations of spin relaxation in graphene.
MoS2 and related metal dichalcogenides (MoSe2, WS2, WSe2) are layered two-dimensional materials that are promising for nanoelectronics and spintronics. For instance, large spin-orbit coupling and spin splitting in the valence band of single layer (SL) MoS2 could lead to enhanced spin lifetimes and large spin Hall angles. Understanding the nature of the contacts is a critical first step for realizing spin injection and spin transport in MoS2. Here, we have investigated Co contacts to SL MoS2 and find that the Schottky barrier height can be significantly decreased with the addition of a thin oxide barrier (MgO). Further, we show that the barrier height can be reduced to zero by tuning the carrier density with back gate. Therefore, the MgO could simultaneously provide a tunnel barrier to alleviate conductance mismatch while minimizing carrier depletion near the contacts. Such control over the barrier height should allow for careful engineering of the contacts to realize spin injection in these materials.
Hydrogen adatoms are shown to generate magnetic moments inside single layer graphene. Spin transport measurements on graphene spin valves exhibit a dip in the nonlocal spin signal as a function of the applied magnetic field, which is due to scattering (relaxation) of pure spin currents by exchange coupling to the magnetic moments. Furthermore, Hanle spin precession measurements indicate the presence of an exchange field generated by the magnetic moments. The entire experiment including spin transport is performed in an ultrahigh vacuum chamber, and the characteristic signatures of magnetic moment formation appear only after hydrogen adatoms are introduced. Lattice vacancies also demonstrate similar behavior indicating that the magnetic moment formation originates from p(z)-orbital defects.
The effects of surface chemical doping on spin transport in graphene are investigated by performing nonlocal measurements in ultrahigh vacuum while depositing gold adsorbates. We demonstrate manipulation of the gate-dependent nonlocal spin signal as a function of gold coverage. We discover that charged impurity scattering is not the dominant mechanism for spin relaxation in graphene, despite its importance for momentum scattering. Finally, unexpected enhancements of the spin lifetime illustrate the complex nature of spin relaxation in graphene.
We have demonstrated the deposition of EuO films on graphene by reactive molecular beam epitaxy in a special adsorption-controlled and oxygen-limited regime, which is a critical advance toward the realization of the exchange proximity interaction (EPI). It has been predicted that when the ferromagnetic insulator (FMI) EuO is brought into contact with graphene, an overlap of electronic wave functions at the FMI/graphene interface can induce a large spin splitting inside the graphene. Experimental realization of this effect could lead to new routes for spin manipulation, which is a necessary requirement for a functional spin transistor. Furthermore, EPI could lead to novel spintronic behavior such as controllable magnetoresistance, gate tunable exchange bias, and quantized anomalous Hall effect. However, experimentally, EuO has not yet been integrated onto graphene. Here we report the successful growth of high-quality crystalline EuO on highly oriented pyrolytic graphite and single-layer graphene. The epitaxial EuO layers have (001) orientation and do not induce an observable D peak (defect) in the Raman spectra. Magneto-optic measurements indicate ferromagnetism with a Curie temperature of 69 K, which is the value for bulk EuO. Transport measurements on exfoliated graphene before and after EuO deposition indicate only a slight decrease in mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.