We reported the new biphasic composites of calcium phosphate and mesoporous silica material (CaP@MSi) in the form of powders and pellets as a potential bone drug delivery system for doxycycline hydrochloride (DOX). The CaP@MSi powders were synthesized by cationic surfactant-templating method. The effects of 10, 20, and 30% CaP content in the CaP@MSi powders on the molecular surface structure, the cytotoxicity against osteoblast cells in vitro, and the mineralization potential in simulated body fluid were investigated. The CaP@MSi characterized by the highest mineralization potential (30% CaP content) were used for DOX adsorption and pelletization process. The CaP which precipitated in the CaP@MSi composites was characterized as calcium-deficient with the Ca:P molar ratio between 1.0 and 1.2. The cytotoxicity assays demonstrated that the CaP content in MSi increases osteoblasts viability indicating the CaP@MSi (30% CaP content) as the most biocompatible. The combination of CaP and MSi was an effective strategy to improve the mineralization potential of parent material. Upon immersion in simulated body fluid, the CaP of composite converted into the bone-like apatite. The obtained pellets preserved the mineralization potential of CaP@MSi and provided the prolonged 5-day DOX release. The obtained biphasic CaP@MSi composites seem to have an application potential as bone-specific drug delivery system.
Here, we report an inorganic hexagonally ordered mesoporous fibre-like carrier made of silica as an effective drug delivery system with mineralisation potential. Fibre-like SBA-15 has been modified by employing a simple surface activation (rehydroxylation) procedure. The surface-rehydroxylated fibre-like SBA-15 (SBA-15-R) was used to investigate the possible mechanism of hydroxyapatite (HA) nucleation and deposition onto silica's surface after immersion in simulated body fluid (SBF). Amorphous calcium phosphate, Cadeficient HA and bone-like HA deposits were observed on SBA-15-R surface consecutively after 7, 14 and 21 days of immersion in SBF. Accordingly, our low-angle XRD, STEM and N 2 adsorption/desorption results indicated that deposited ions were mostly located at the silica's surface and could modify the size of the mesopores. The SBA-15-R was studied in vitro as the potential bioactive drug delivery system using doxorubicin (DOX) as a model water-soluble and anticancer drug. The adsorbed DOX molecules were mostly located at the pore walls and pore openings, likely together with the silanol groups. The DOX release was diffusioncontrolled and relatively slower in SBF (pH = 7.4) than in phosphate-buffered solution (pH = 5.0), most probably due to both the stronger electrostatic interactions occurring between the DOX and the SBA-15-R and the simultaneous deposition of calcium and phosphates ions from SBF.
In this study, we obtained novel solid films composed of ciprofloxacin-loaded mesoporous silica materials (CIP-loaded MCM-41) and polymer coating blends. Polymer coating blends were composed of ethylcellulose (EC) with various levels of polydimethylsiloxane (PDMS, 0, 1, 2% (v/v)). The solid films were prepared via the solvent-evaporation molding method and characterized by using scanning electron microscopy (SEM), optical profilometry, and wettability analyses. The solid-state of CIP present in the solid films was studied using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The release profiles of CIP were examined as a function of PDMS content in solid films. The surface morphology analysis of solid films indicated the progressive increase in surface heterogeneity and roughness with increasing PDMS content. The contact angle study confirmed the hydrophobicity of all solid films and significant impact of both PDMS and CIP-loaded MCM-41 on surface wettability. DSC and XRD analysis confirmed the presence of amorphous/semi-crystalline CIP in solid films. The Fickian diffusion-controlled drug release was observed for the CIP-loaded MCM-41 coated with PDMS-free polymer blend, whereas zero-order drug release was noticed for the CIP-loaded MCM-41 coated with polymer blends enriched with PDMS. Both the release rate and initial burst of CIP decreased with increasing PDMS content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.