While caspases have been strongly implicated in delayed neuronal death in a variety of experimental paradigms, other proteases such as calpain can also contribute to neuronal death. To evaluate the relative roles of caspase and calpain, we used a model system wherein UV treatment induced moderate or severe delayed cortical neuronal death, as quantified by propidium iodide and calcein AM. UV treatment led to increases in both caspase and calpain activation. Calpain inhibitor III (MDL-28170) reduced caspase activation, suggesting that caspase activation was mediated by calpain. Calpain contributed to neuronal death, as indicated by strong neuroprotection provided by calpain inhibitor III, calpeptin, or Ca 2+ -free medium. In contrast, caspase inhibitors were not neuroprotective. These results suggest that UV neurotoxicity is mediated by a loss of Ca 2+ homeostasis which leads to a calpain-dependent, caspase-independent cell death. That calpain, but not caspase, may mediate death in instances involving the activation of both proteases may have relevance to other neuronal death models.
Thiol-proteases play important roles in many cellular processes, including maintenance of protein homeostasis and execution of cell death. Therefore, determining how this family of enzymes is regulated is critical for our understanding of both physiological and pathological conditions. Because these proteases require a reduced cysteine residue for activity, the cellular redox state plays a crucial role in regulating the activity of thiol proteases. Importantly, increased oxidative stress can result in the direct modification of the active site cysteine, leading to enzyme inactivation. This would suggest that oxidative stress that occurs during pathological insults could prolong cell survival by preventing the execution of thiol-protease-dependent cell death pathways. To test this hypothesis, cultured rat cortical neurons were treated with the oxidizing agent diamide or doxorubicin in the presence or absence of the calcium ionophore ionomycin. Under normoxic conditions, ionomycin treatment resulted in approximately 70% cell death, which was prevented by addition of the calpain-selective inhibitor benyzloxycarbonyl-Leu-Leu-Tyr fluoromethylketone. Similarly, pretreatment of neurons with either oxidant was also protective. Protection resulting from oxidative stress was not due to new protein synthesis, insofar as cycloheximide did not affect oxidant-mediated protection. Interestingly, treatment with the antioxidant Trolox to reverse or prevent oxidative stress blocked the protective effects of both oxidants against ionomycin-induced cell death. We interpret these findings to suggest that, in diseases or conditions in which oxidative stress is increased, the ability of thiol-proteases to execute cell death pathways fully is decreased and may prolong cell survival.
The relative roles of the high-affinity nerve growth factor (NGF) receptor, TrkA, and low-affinity p75 neurotrophin receptor (p75NTR) in neuronal survival are an active research area. We reported previously that UV treatment induces a calpain-dependent, delayed neuronal death. We show here that NGF inhibits this UV-induced cortical neuron death. Interestingly, NGF neuroprotection requires p75NTR. Because it has been reported that NGF binding to p75NTR leads to ceramide generation, we evaluated whether ceramide was also neuroprotective. We found that ceramide also inhibits UV toxicity, and that the actions of ceramide and NGF were not additive. Moreover, cycloheximide inhibited ceramide and NGF neuroprotection, suggesting that their actions require new protein synthesis. Consistent with this possibility, we found that NGF activates the expression of genes such as calbindin. Lastly, we explored the role of calpain in NGF actions. NGF and ceramide both reduced the level of calpain activation after UV treatment. This NGF effect was p75NTR dependent. Overall, we interpret these results as consistent with an NGF neuroprotective pathway wherein p75NTR activation leads sequentially to ceramide generation, new protein synthesis, and inhibition of calpain activation. Overall, these results provide insight into a p75NTR dependent pathway of NGF neuroprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.