We report that the shape, orientation, edge geometry, and thickness of chemical vapor deposition graphene domains can be controlled by the crystallographic orientations of Cu substrates. Under low-pressure conditions, single-layer graphene domains align with zigzag edges parallel to a single <101> direction on Cu(111) and Cu(101), while bilayer domains align to two directions on Cu(001). Under atmospheric pressure conditions, hexagonal domains also preferentially align. This discovery can be exploited to generate high-quality, tailored graphene with controlled domain thickness, orientations, edge geometries, and grain boundaries.
Solid-state supercapacitors can be fabricated by uniformly coating RuO2onto vertical graphene (VG) using a simple, scalable, low-cost and solution-free method. The binder-free RuO2/VG hybrid electrodes possess a high areal capacitance, low electrical resistance, good frequency response, and excellent stability, shedding light on the commercialisation of Ru-based energy storage devices.
The inability of membranes to handle a wide spectrum of pollutants is an important unsolved problem for water treatment. Here we demonstrate water desalination via a membrane distillation process using a graphene membrane where water permeation is enabled by nanochannels of multilayer, mismatched, partially overlapping graphene grains. Graphene films derived from renewable oil exhibit significantly superior retention of water vapour flux and salt rejection rates, and a superior antifouling capability under a mixture of saline water containing contaminants such as oils and surfactants, compared to commercial distillation membranes. Moreover, real-world applicability of our membrane is demonstrated by processing sea water from Sydney Harbour over 72 h with macroscale membrane size of 4 cm2, processing ~0.5 L per day. Numerical simulations show that the channels between the mismatched grains serve as an effective water permeation route. Our research will pave the way for large-scale graphene-based antifouling membranes for diverse water treatment applications.
Precise control of graphene properties is an essential step toward the realization of future graphene devices. Defects, such as individual nitrogen atoms, can strongly influence the electronic structure of graphene. Therefore, state-of-the-art characterization techniques, in conjunction with modern modeling tools, are necessary to identify these defects and fully understand the synthesized material. We have directly visualized individual substitutional nitrogen dopant atoms in graphene using scanning transmission electron microscopy and conducted complementary electron energy loss spectroscopy experiments and modeling which demonstrates the influence of the nitrogen atom on the carbon K-edge.
Ammonia borane (AB) is among the most promising precursors for the large-scale synthesis of hexagonal boron nitride (h-BN) by chemical vapour deposition (CVD). Its non-toxic and non-flammable properties make AB particularly attractive for industry. AB decomposition under CVD conditions, however, is complex and hence has hindered tailored h-BN production and its exploitation. To overcome this challenge, we report in-depth decomposition studies of AB under industrially safe growth conditions. In situ mass spectrometry revealed a time and temperature-dependent release of a plethora of NxBy-containing species and, as a result, significant changes of the N:B ratio during h-BN synthesis. Such fluctuations strongly influence the formation and morphology of 2D h-BN. By means of in situ gas monitoring and regulating the precursor temperature over time we achieve uniform release of volatile chemical species over many hours for the first time, paving the way towards the controlled, industrially viable production of h-BN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.