The generation of singlet oxygen (SO) in the presence of specific photosensitizers (PS) or semiconductor nanoparticles (NPs) and its application in photodynamic therapy (PDT) has great interest for the development of new cancer therapies. Our work focused on the identification of factors leading to the enhancement of B-Chronic Lymphocytic Leukemia (B-CLL) intracellular SO production and cell killing using Manganese (Mn) doped and undoped Zinc Oxide (ZnO) NPs as potential photosensitizers with and without PDT. Mn can enhance ZnO NPs generation of SO by targeted cells. Multi drug resistant B-Chronic Lymphocytic Leukemia (B-CLL) cells spontaneously produce high amounts of Reactive Oxygen Species (ROS) having an altered redox state in relation to that of normal B lymphocytes. These little variations of its SO intracellular concentrations could allow ZnO NPs to execute specific deadly programs against these leukemic cells with no significant damage to normal lymphocytes. A 0.5% Mn Doped ZnO NP was finally selected for further probes as it had the best killing activity in fludarabine resistant B-CLL cells, especially when combined with PDT. This could be an innovative specific therapy against resistant B-CLL probably contributing in the near future for the definitive benefit of these bad prognostic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.