The mitogen-activated protein kinases (MAPKs) are a family of serine/threonine kinases that play an essential role in signal transduction by modulating gene transcription in the nucleus in response to changes in the cellular environment. They include the extracellular signal-regulated protein kinases (ERK1 and ERK2); c-Jun N-terminal kinases (JNK1, JNK2, JNK3); p38s (p38a, p38b, p38c, p38d) and ERK5. The molecular events in which MAPKs function can be separated in discrete and yet interrelated steps: activation of the MAPK by their upstream kinases, changes in the subcellular localization of MAPKs, and recognition, binding and phosphorylation of MAPK downstream targets. The resulting pattern of gene expression will ultimately depend on the integration of the combinatorial signals provided by the temporal activation of each group of MAPKs. This review will focus on how the specificity of signal transmission by MAPKs is achieved by scaffolding molecules and by the presence of structural motifs in MAPKs that are dynamically regulated by phosphorylation and protein-protein interactions. We discuss also how MAPKs recognize and phosphorylate their target nuclear proteins, including transcription factors, co-activators and repressors and chromatin-remodeling molecules, thereby affecting an intricate balance of nuclear regulatory molecules that ultimately control gene expression in response to environmental cues.
Transcription factors are central components of the intracellular regulatory networks that control gene expression. An increasingly recognized phenomenon among human transcription factors is the formation of structure upon target binding. Here, we study the folding and binding of the pKID domain of CREB to the KIX domain of the co-activator CBP. Our simulations of a topology-based Gō-type model predict a coupled folding and binding mechanism, and the existence of partially bound intermediates. From transition-path and Φ-value analyses, we find that the binding transition state resembles the unstructured state in solution, implying that CREB becomes structured only after committing to binding. A change of structure following binding is reminiscent of an induced-fit mechanism and contrasts with models in which binding occurs to pre-structured conformations that exist in the unbound state at equilibrium. Interestingly, increasing the amount of structure in the unbound pKID reduces the rate of binding, suggesting a “fly-casting”-like process. We find that the inclusion of attractive non-native interactions results in the formation of non-specific encounter complexes that enhance the on-rate of binding, but do not significantly change the binding mechanism. Our study helps explain how being unstructured can confer an advantage in protein target recognition. The simulations are in general agreement with the results of a recently reported nuclear magnetic resonance study, and aid in the interpretation of the experimental binding kinetics.
The frustratometer is an energy landscape theory-inspired algorithm that aims at quantifying the location of frustration manifested in protein molecules. Frustration is a useful concept for gaining insight to the proteins biological behavior by analyzing how the energy is distributed in protein structures and how mutations or conformational changes shift the energetics. Sites of high local frustration often indicate biologically important regions involved in binding or allostery. In contrast, minimally frustrated linkages comprise a stable folding core of the molecule that is conserved in conformational changes. Here, we describe the implementation of these ideas in a webserver freely available at the National EMBNet node—Argentina, at URL: http://lfp.qb.fcen.uba.ar/embnet/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.