Background In-hospital cardiac arrest (IHCA) is associated with high mortality and health care costs in the recovery phase. Predicting adverse outcome events, including readmission, improves the chance for appropriate interventions and reduces health care costs. However, studies related to the early prediction of adverse events of IHCA survivors are rare. Therefore, we used a deep learning model for prediction in this study. Objective This study aimed to demonstrate that with the proper data set and learning strategies, we can predict the 30-day mortality and readmission of IHCA survivors based on their historical claims. Methods National Health Insurance Research Database claims data, including 168,693 patients who had experienced IHCA at least once and 1,569,478 clinical records, were obtained to generate a data set for outcome prediction. We predicted the 30-day mortality/readmission after each current record (ALL-mortality/ALL-readmission) and 30-day mortality/readmission after IHCA (cardiac arrest [CA]-mortality/CA-readmission). We developed a hierarchical vectorizer (HVec) deep learning model to extract patients’ information and predict mortality and readmission. To embed the textual medical concepts of the clinical records into our deep learning model, we used Text2Node to compute the distributed representations of all medical concept codes as a 128-dimensional vector. Along with the patient’s demographic information, our novel HVec model generated embedding vectors to hierarchically describe the health status at the record-level and patient-level. Multitask learning involving two main tasks and auxiliary tasks was proposed. As CA-mortality and CA-readmission were rare, person upsampling of patients with CA and weighting of CA records were used to improve prediction performance. Results With the multitask learning setting in the model learning process, we achieved an area under the receiver operating characteristic of 0.752 for CA-mortality, 0.711 for ALL-mortality, 0.852 for CA-readmission, and 0.889 for ALL-readmission. The area under the receiver operating characteristic was improved to 0.808 for CA-mortality and 0.862 for CA-readmission after solving the extremely imbalanced issue for CA-mortality/CA-readmission by upsampling and weighting. Conclusions This study demonstrated the potential of predicting future outcomes for IHCA survivors by machine learning. The results showed that our proposed approach could effectively alleviate data imbalance problems and train a better model for outcome prediction.
Introduction: Predicting rare catastrophic events is challenging due to lack of targets. Here we employed a multi-task learning method and demonstrated that substantial gains in accuracy and generalizability was achieved by sharing representations between related tasks Methods: Starting from Taiwan National Health Insurance Research Database, we selected adult people (>20 year) experienced in-hospital cardiac arrest but not out-of-hospital cardiac arrest during 8 years (2003-2010), and built a dataset using de-identified claims of Emergency Department (ED) and hospitalization. Final dataset had 169,287 patients, randomly split into 3 sections, train 70%, validation 15%, and test 15%.Two outcomes, 30-day readmission and 30-day mortality are chosen. We constructed the deep learning system in two steps. We first used a taxonomy mapping system Text2Node to generate a distributed representation for each concept. We then applied a multilevel hierarchical model based on long short-term memory (LSTM) architecture. Multi-task models used gradient similarity to prioritize the desired task over auxiliary tasks. Single-task models were trained for each desired task. All models share the same architecture and are trained with the same input data Results: Each model was optimized to maximize AUROC on the validation set with the final metrics calculated on the held-out test set. We demonstrated multi-task deep learning models outperform single task deep learning models on both tasks. While readmission had roughly 30% positives and showed miniscule improvements, the mortality task saw more improvement between models. We hypothesize that this is a result of the data imbalance, mortality occurred roughly 5% positive; the auxiliary tasks help the model interpret the data and generalize better. Conclusion: Multi-task deep learning models outperform single task deep learning models in predicting 30-day readmission and mortality in in-hospital cardiac arrest patients.
BACKGROUND In-hospital cardiac arrest (IHCA) is associated with high mortality and health care costs in the recovery phase. Predicting adverse outcome events, including readmission, improves the chance for appropriate interventions and reduces health care costs. However, studies related to the early prediction of adverse events of IHCA survivors are rare. Therefore, we used a deep learning model for prediction in this study. OBJECTIVE This study aimed to demonstrate that with the proper data set and learning strategies, we can predict the 30-day mortality and readmission of IHCA survivors based on their historical claims. METHODS National Health Insurance Research Database claims data, including 168,693 patients who had experienced IHCA at least once and 1,569,478 clinical records, were obtained to generate a data set for outcome prediction. We predicted the 30-day mortality/readmission after each current record (ALL-mortality/ALL-readmission) and 30-day mortality/readmission after IHCA (cardiac arrest [CA]-mortality/CA-readmission). We developed a hierarchical vectorizer (HVec) deep learning model to extract patients’ information and predict mortality and readmission. To embed the textual medical concepts of the clinical records into our deep learning model, we used Text2Node to compute the distributed representations of all medical concept codes as a 128-dimensional vector. Along with the patient’s demographic information, our novel HVec model generated embedding vectors to hierarchically describe the health status at the record-level and patient-level. Multitask learning involving two main tasks and auxiliary tasks was proposed. As CA-mortality and CA-readmission were rare, person upsampling of patients with CA and weighting of CA records were used to improve prediction performance. RESULTS With the multitask learning setting in the model learning process, we achieved an area under the receiver operating characteristic of 0.752 for CA-mortality, 0.711 for ALL-mortality, 0.852 for CA-readmission, and 0.889 for ALL-readmission. The area under the receiver operating characteristic was improved to 0.808 for CA-mortality and 0.862 for CA-readmission after solving the extremely imbalanced issue for CA-mortality/CA-readmission by upsampling and weighting. CONCLUSIONS This study demonstrated the potential of predicting future outcomes for IHCA survivors by machine learning. The results showed that our proposed approach could effectively alleviate data imbalance problems and train a better model for outcome prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.