Target-based approaches toward new antimalarial treatments are highly valuable to prevent resistance development. We report several series of pyrazolopyran-based inhibitors targeting the enzyme serine hydroxymethyltransferase (SHMT), designed to improve microsomal metabolic stability and to identify suitable candidates for in vivo efficacy evaluation. The best ligands inhibited Plasmodium falciparum (Pf) and Arabidopsis thaliana (At) SHMT in target assays and PfNF54 strains in cell-based assays with values in the low nanomolar range (3.2-55 nM). A set of carboxylate derivatives demonstrated markedly improved in vitro metabolic stability (t > 2 h). A selected ligand showed significant in vivo efficacy with 73% of parasitemia reduction in a mouse model. Five new cocrystal structures with PvSHMT were solved at 2.3-2.6 Å resolution, revealing a unique water-mediated interaction with Tyr63 at the end of the para-aminobenzoate channel. They also displayed the high degree of conformational flexibility of the Cys364-loop lining this channel.
Tris(2-carboxyethyl)phosphine (TCEP) is an often-used reducing agent in biochemistry owing to its selectivity towards disulfide bonds. As TCEP causes undesired consecutive side reactions in various analytical methods (e.g., gel electrophoresis, protein labeling), it is usually removed by means of dialysis or gel filtration. Here, an alternative method of separation is presented, namely the immobilization of TCEP on magnetic nanoparticles. This magnetic reagent provides a simple and rapid approach to remove the reducing agent after successful reduction. A reduction capacity of 70 μmol per gram of particles was achieved by using surface-initiated atom transfer polymerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.