We study the twisted local zeta function associated to a polynomial in two variables with coefficients in a non-Archimedean local field of arbitrary characteristic. Under the hypothesis that the polynomial is arithmetically non degenerate, we obtain an explicit list of candidates for the poles in terms of geometric data obtained from a family of arithmetic Newton polygons attached to the polynomial. The notion of arithmetical non degeneracy due to Saia and Zúñiga-Galindo is weaker than the usual notion of non degeneracy due to Kouchnirenko. As an application we obtain asymptotic expansions for certain exponential sums attached to these polynomials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.