The variability in the response to antipsychotic medication in schizophrenia may reflect between-patient differences in neurobiology. Recent cross-sectional neuroimaging studies suggest that a poorer therapeutic response is associated with relatively normal striatal dopamine synthesis capacity but elevated anterior cingulate cortex (ACC) glutamate levels. We sought to test whether these measures can differentiate patients with psychosis who are antipsychotic responsive from those who are antipsychotic nonresponsive in a multicenter cross-sectional study. 1H-magnetic resonance spectroscopy (1H-MRS) was used to measure glutamate levels (Glucorr) in the ACC and in the right striatum in 92 patients across 4 sites (48 responders [R] and 44 nonresponders [NR]). In 54 patients at 2 sites (25 R and 29 NR), we additionally acquired 3,4-dihydroxy-6-[18F]fluoro-l-phenylalanine (18F-DOPA) positron emission tomography (PET) to index striatal dopamine function (Kicer, min−1). The mean ACC Glucorr was higher in the NR than the R group after adjustment for age and sex (F1,80 = 4.27; P = .04). This was associated with an area under the curve for the group discrimination of 0.59. There were no group differences in striatal dopamine function or striatal Glucorr. The results provide partial further support for a role of ACC glutamate, but not striatal dopamine synthesis, in determining the nature of the response to antipsychotic medication. The low discriminative accuracy might be improved in groups with greater clinical separation or increased in future studies that focus on the antipsychotic response at an earlier stage of the disorder and integrate other candidate predictive biomarkers. Greater harmonization of multicenter PET and 1H-MRS may also improve sensitivity.
Purpose Glutathione (GSH) is an important intracellular antioxidant in the brain. A number of studies report its measurement by localized 1H spectroscopy using PRESS and STEAM. This study evaluates the reliability and accuracy of GSH measurements from PRESS at 3T and compares the results to those obtained with MEGA-PRESS. Methods Phantoms containing brain metabolites, identical except for variable GSH concentration between 0mM and 24mM, were scanned using PRESS (TE=35ms) and MEGA-PRESS(optimized TE=130ms) at 3T. Spectra of the anterior cingulate cortex and occipital cortex in 7 healthy volunteers were also acquired. Results Phantom GSH concentrations from 0 to 3mM were unreliably quantified using PRESS although at 4mM and above there was a linear relationship between measured and true concentrations (R2=0.99). Using MEGA-PRESS, there was no signal detected at 0mM GSH, plus a linear relationship (R2=0.99) over the full range from 0 – 24mM. In brain, concentrations calculated from MEGA-PRESS and PRESS were significantly different in occipital cortex (P<0.001). Moreover only MEGA-PRESS reported significant differences in [GSH] between the two brain regions (P=0.003). Conclusion Due to uncertainties in GSH quantification raised by the study, authors conclude that physiological concentrations (<4mM) of GSH cannot be reliably quantified from PRESS (TE=35ms) spectra at 3T.
γ‐Aminobutyric acid (GABA) and glutamate (Glu), major neurotransmitters in the brain, are recycled through glutamine (Gln). All three metabolites can be measured by magnetic resonance spectroscopy in vivo, although GABA measurement at 3 T requires an extra editing acquisition, such as Mescher–Garwood point‐resolved spectroscopy (MEGA‐PRESS). In a GABA‐edited MEGA‐PRESS spectrum, Glu and Gln co‐edit with GABA, providing the possibility to measure all three in one acquisition. In this study, we investigated the reliability of the composite Glu + Gln (Glx) peak estimation and the possibility of Glu and Gln separation in GABA‐edited MEGA‐PRESS spectra. The data acquired in vivo were used to develop a quality assessment framework which identified MEGA‐PRESS spectra in which Glu and Gln could be estimated reliably. Phantoms containing Glu, Gln, GABA and N‐acetylaspartate (NAA) at different concentrations were scanned using GABA‐edited MEGA‐PRESS at 3 T. Fifty‐six sets of spectra in five brain regions were acquired from 36 healthy volunteers. Based on the Glu/Gln ratio, data were classified as either within or outside the physiological range. A peak‐by‐peak quality assessment was performed on all data to investigate whether quality metrics can discriminate between these two classes of spectra. The quality metrics were as follows: the GABA signal‐to‐noise ratio, the NAA linewidth and the Glx Cramer–Rao lower bound (CRLB). The Glu and Gln concentrations were estimated with precision across all phantoms with a linear relationship between the measured and true concentrations: R 1 = 0.95 for Glu and R 1 = 0.91 for Gln. A quality assessment framework was set based on the criteria necessary for a good GABA‐edited MEGA‐PRESS spectrum. Simultaneous criteria of NAA linewidth <8 Hz and Glx CRLB <16% were defined as optimum features for reliable Glu and Gln quantification. Glu and Gln can be reliably quantified from GABA‐edited MEGA‐PRESS acquisitions. However, this reliability should be controlled using the quality assessment methods suggested in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.