The increase in the consumption of natural drugs have made their use a Public Health problem due to the possibility of access to products without adequate conditions of use. The concern with the quality of the natural products is due to the potential fungal contamination and the risk of the presence of mycotoxins. Ninety-one samples of medicinal plants were evaluated for the fungal contamination and the mycotoxigenic potential of Aspergillus and Penicillium isolated from the samples. Results indicated that predominant mycoflora was distributed in 10 genera. From these, 89.9% of the isolates corresponded to genera Aspergillus and Penicillium, which are extremely important from the mycotoxicological standpoint. 21.97% of the Aspergillus and Penicillium isolates proved to have the ability for producing aflatoxins (42.9%), ochratoxin A (22.4%) and citrinine (34.7%). The presence of toxigenic moulds represents a potential risk of mycotoxin contamination and considering the worldwide increased use of herbal products as alternative medicines, it is necessary setting standards for toxigenic moulds in crude herbal drugs in order to reduce the risks for consumers' health.
The antimicrobial activity of Curcuma zedoaria (Christm) Roscoe extract against some oral microorganisms was compared with the antimicrobial activity of five commercial mouthrinses in order to evaluate the potential of the plant extract to be incorporated into formulas for improving or creating antiseptic activity. The in vitro antimicrobial efficacy of plant extracts and commercial products were evaluated against Streptococcus mutans, Enterococcus faecalis, Staphylococcus aureus and Candida albicans using a linear regression method to evaluate the microbial reduction obtained in function of the exposure time, considering as effectiveness a 99.999% reduction in count of standardized microbial populations within 60 seconds. The results showed that the antimicrobial efficacy of Curcuma zedoaria (Christm) Roscoe extract was similar to that of commercial products, and its incorporation into a mouthrinse could be an alternative for improving the antimicrobial efficacy of the oral product.
Sterility testing as described in the pharmacopoeia compendia requires a 14-day incubation period to obtain an analytical result. Alternative methods that could be applied to evaluating product sterility are especially interesting due to the possibility of reducing this incubation period and thus the associated costs. The aims of this study were to evaluate the performance of the BacT/ALERTR 3D system in detecting microorganisms in large-volume parenteral solutions that were intentionally contaminated and to compare this system to pharmacopoeia sterility testing using the membrane filtration method. The results indicated that there were no significant differences between the methods regarding the ability to detect microbial contamination; however, detection with the BacT/ALERTR 3D system was faster compared to the pharmacopoeia method. Therefore, the BacT/ALERTR 3D system is a viable alternative for assessing the sterility of injectable products.
The sterility test described in pharmacopoeial compendia requires a 14-day incubation period to obtain a valid analytical result. Therefore, the use of alternative methods to evaluate the sterility of pharmaceuticals, such as the BacT/Alert® 3D system, is particularly interesting, because it allows a reduced incubation period and lower associated costs. Considering that the BacT/Alert® 3D system offers several culture media formulations developed for this microbial detection system, the present study was aimed to evaluate and compare the performance of BacT/Alert® 3D with the pharmacopoeial sterility test. There was no significant difference between the ability of the culture media to allow detection of microbial contamination. However, the rapid sterility testing method allowed a more rapid detection of the challenge microorganisms, which indicates that the system is a viable alternative for assessing the sterility of injectable products.
Introduction: In hemodialysis, patients are exposed to a large volume of water, which may lead to fatal risks if not meeting quality standards. This study aimed to validate an alternative method for monitoring microbiological quality of treated water and assess its applicability in dialysis and dialysate analysis, to allow corrective actions in real-time. Methods: Validation and applicability were analyzed by conventional and alternative methods. For validation, E. coli standard endotoxin was diluted with apyrogenic water in five concentrations. For the applicability analysis, treated water for dialysis was collected from different points in the treatment system (reverse osmosis, drainage canalization at the storage tank bottom, reuse, and loop), and dialysate was collected from four machines located in different rooms in the hemodialysis sector. Results: The validation results were in accordance with the Brazilian Pharmacopoeia acceptance criteria, except for the last two concentrations analyzed. In addition, the ruggedness criterion performed under the US Pharmacopoeia was in agreement with the results. Discussion: A limiting factor in the applicability analysis was the absence of the endotoxin maximum permitted level in dialysate by the Brazilian legislation. When comparing the analysis time, the alternative method was more time-consuming than the conventional one. This suggests that the alternative method is effective in the case of few analyses, that is, real-time analyses, favoring corrective actions promptly. On the other hand, it does not support the implementation of the alternative method in a laboratory routine due to the high demand for analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.