Activation of the Fanconi anemia (FA) DNA damage-response pathway results in the monoubiquitination of FANCD2, which is regulated by the nuclear FA core ubiquitin ligase complex. A FANCD2 protein sequence-based homology search facilitated the discovery of FANCI, a second monoubiquitinated component of the FA pathway. Biallelic mutations in the gene coding for this protein were found in cells from four FA patients, including an FA-I reference cell line.
SummaryAlthough carcinogenic metals have been known to disrupt a wide range of cellular processes the precise mechanism by which these exert their carcinogenic effects is not known. Over the last decade or two, studies in the field of metal carcinogenesis suggest that epigenetic mechanisms may play a role in metal-induced carcinogenesis. In this review we summarize the evidence demonstrating that exposure to carcinogenic metals such as nickel, arsenic, chromium, and cadmium can perturb DNA methylation levels as well as global and gene specific histone tail posttranslational modification marks. We also wish to emphasize the importance in understanding that gene expression can be regulated by both genetic and epigenetic mechanisms and both these must be considered when studying the mechanism underlying the toxicity and cell-transforming ability of carcinogenic metals and other toxicants, and aberrant changes in gene expression that occur during disease states such as cancer.
Carcinogenic metals, such as nickel, arsenic, and chromium, are widespread environmental and occupational pollutants. Chronic exposure to these metals has been connected with increased risks of numerous cancers and as well as non-carcinogenic health outcomes, including cardiovascular disease, neurologic deficits, neuro-developmental deficits in childhood, and hypertension. However, currently the specific molecular targets for metal toxicity and carcinogenicity are not fully understood. Here, we propose that the iron- and 2-oxoglutaratedependent dioxygenase family enzymes, as well as, other histone modifying enzymes are important intracellular targets that mediate the toxicity and carcinogenicity of nickel, and maybe potential targets in chromium and arsenic induced carcinogenesis. Our data demonstrates that all three metals are capable of inducing post-translational histone modifications and affecting the enzymes that modulate them (i.e. the iron- and 2-oxoglutaratedependent dioxygenase family, including HIF-prolyl hydroxylase PHD2, histone demethylase JHDM2A/JMJD1A, and DNA repair enzymes ABH3 and ABH2, and histone methyltransferases, G9a). Given the effects these metals can exert on the epigenome, future studies of their involvement in histone modifying enzymes dynamics would deepen our understanding on their respective toxicities and carcinogenicities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.