Multiphoton microscopy provides a suitable technique for imaging biological tissues with submicrometer resolution. Usually a Gaussian beam (GB) is used for illumination, leading to a reduced power efficiency in the multiphoton response and vignetting for a square-shaped imaging area. A flat-top beam (FTB) provides a uniform spatial intensity distribution that equalizes the probability of a multiphoton effect across the imaging area. We employ a customized widefield multiphoton microscope to compare the performance of a squareshaped FTB illumination with that based on using a GB, for both two-photon fluorescence (TPF) and second-harmonic generation (SHG) imaging. The variation in signal-to-noise ratio across TPF images of fluorescent dyes spans ∼5.6 dB for the GB and ∼1.2 dB for the FTB illumination, respectively. For the GB modality, TPF images of mouse colon and Convallaria root, and SHG images of chicken tendon and human breast biopsy tissue showcase ∼20% area that are not imaged due to either insufficient or lack of illumination. For quantitative analysis that depends on the illuminated area, this effect can potentially lead to inaccuracies. This work emphasizes the applicability of FTB illumination to multiphoton applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.