Deforestation of temperate forests has created landscapes of forest remnants in matrices of intense human use. We studied the genetic effects of fragmentation in southern Chile on Embothrium coccineum J.R. et G. Forster, an early colonizing, bird-pollinated tree. We tested the hypothesis that, because of its self-incompatibility and life-history strategy, E. coccineum is less strongly affected by fragmentation. We studied the effects of reduced population size and increased isolation on population genetic structure and early performance of progeny. Samples were collected from spatially isolated trees and six fragments of differing sizes (small, 1 ha; medium, 20 ha; large, >150 ha). Based on isozyme polymorphisms we estimated parameters of genetic diversity, divergence, and inbreeding for adults and greenhouse-grown progeny. We also measured germination, seedling growth, and outcrossing rates on progeny arrays. Genetic variation of adults did not correlate significantly with population size, as expected, given that fragmentation occurred relatively recently. Weak effects of fragmentation were measured on progeny. Only adults yielded significant inbreeding. Similar total genetic diversity was found in adults and progeny. Low but significant genetic differentiation existed among adult and progeny populations. Seedling growth correlated positively with the effective number of alleles, showing deleterious effects of inbreeding on progeny. Seeds from small fragments had the highest outcrossing rates and germination success, indicating that higher pollinator activity in such fragments reduced selfing, thereby buffering genetic erosion and maintaining adaptive variation. The effects of forest fragmentation were detectable in E. coccineum, but these effects will probably not be detrimental to the viability of remnant populations because small, fragmented populations demonstrated higher levels of gene flow and lower inbreeding than larger stands. Pioneer species that are insensitive to forest clearing may be crucial in recovery plans to facilitate the establishment of species intolerant to such disturbance.
The effects of Pleistocene glaciations on the genetic characteristics of the most austral conifer in the world, Pilgerodendron uviferum , were analysed with specific reference to the hypothesis that the species persisted locally in ice-free areas in temperate South America. It was expected that genetic variation would decrease with latitude, given that ice fields were larger in southern Patagonia and thus refugia were probably located towards the northern distributional limit of the species as suggested by the fossil record. In addition, an increase in among-population genetic divergence was expected with increasing distance to putative glacial refugia. We examined the relationship between location and within-population variability indices of 20 Pilgerodendron populations derived from isozyme analyses. We analysed possible refugia hypotheses by the distribution of allele frequencies using multivariate discriminant analysis. The degree of genetic differentiation with geographical distance between all population pairs was investigated by Mantel tests. Results indicated that Pilgerodendron populations are highly monomorphic, probably reflecting past population bottlenecks and reduced gene flow. Southernmost populations tend to be the least genetically variable and were therefore probably more affected by glacial activity than northern ones. Populations located outside ice limits seem to have been isolated during the glacial period. The presence of centres of genetic diversity, together with the lack of a significant correlation between genetic and geographical distances and the absence of geographical patterns of allelic frequencies at most analysed alleles, may indicate that Pilgerodendron did not advance southward after the last glaciation from a unique northern refugium, but spread from several surviving populations in ice-free areas in Patagonia instead.
Pollinator‐mediated competition through shared pollinators can lead to segregated flowering phenologies, but empirical evidence for the process responsible for this flowering pattern is sparse. During two flowering seasons, we examined whether increasing overlap in flowering phenology decreased conspecific pollination, increased heterospecific pollination, and depressed seed output in the seven species composing a hummingbird–plant assemblage from the temperate forest of southern South America. Overall trends were summarized using meta‐analysis. Despite prevailing negative associations, relations between phenological overlap and conspecific pollen receipt varied extensively among species and between years. Heterospecific pollen receipt was low and presumably of limited biological significance. However, our results supported the hypothesis that concurrent flowering promotes interspecific pollen transfer, after accounting for changes in the abundance of conspecific flowers. Seed output was consistently reduced during maximum phenological overlap during the first flowering season because of limited fruit set. Responses varied more during the second year, despite an overall negative trend among species. Relations between estimated effects of phenological overlap on pollination and seed output, however, provided mixed evidence that conspecific pollen loss during pollinator visits to foreign flowers increases pollen limitation. By flowering together, different plant species might benefit each other's pollination by increasing hummingbird recruitment at the landscape level. Nevertheless, our results are mostly consistent with the hypothesis of pollinator‐mediated competition shaping the segregated flowering pattern reported previously for this temperate plant assemblage. The mechanisms likely involve effects on male function, whereby pollen‐transport loss during heterospecific flower visits limit pollen export, and more variable effects on female function through pollen limitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.