Hazardous industrial sites have always represented a threat for the community often provoking major accidents overcoming the boundaries of the plants and affecting the surrounding urban areas. If the industrial sites are located in natural hazard-prone areas, technological accidents may be triggered by natural events, generating so-called na-tech events which may modify and increase the impact and the overall damage in the areas around them. Nevertheless, natural and technological hazards are still treated as two separate issues, and up to now the methods for na-tech risk assessment have been developed mainly for specific natural hazards, generally restricted to some plant typologies and to the area of the plant itself. Based on a review of the current na-tech literature, this article illustrates a risk assessment method as a supporting tool for land use planning strategies aimed at reducing na-tech risk in urban areas. More specifically, a multi attribute decision-making method, combined with fuzzy techniques, has been developed. The method allows planners to take into account, according to different territorial units, all the individual na-tech risk factors, measured through both quantitative and qualitative parameters, while providing them with a na-tech risk index, useful to rank the territorial units and to single out the priority intervention areas. The method is designed to process information generally available about hazardous plants (safety reports), natural hazards (hazard maps) and features of urban systems mainly influencing their exposure and vulnerability to na-tech events (common statistical territorial data). Furthermore, the method implemented into a GIS framework should easily provide planners with comparable maps to figure out the hazard factors and the main territorial features influencing the exposure and vulnerability of urban systems to na-tech events. The method has been tested on a middle-sized Municipality in the Campania Region, identified as 2nd class seismic zone, according to the Ordinance 3274/2003, in which a LPG storage plant, classified as a plant with major accident potential by the Seveso II Directive (art. 9), is located just within the city core
Abstract. We perform a multi-scale impact assessment of tephra fallout and dispersal from explosive volcanic activity in Iceland. A companion paper (Biass et al., 2014; "A multi-scale risk assessment of tephra fallout and airborne concentration from multiple Icelandic volcanoes – Part I: hazard assessment") introduces a multi-scale probabilistic assessment of tephra hazard based on selected eruptive scenarios at four Icelandic volcanoes (Hekla, Askja, Eyjafjallajökull and Katla) and presents probabilistic hazard maps for tephra accumulation in Iceland and tephra dispersal across Europe. Here, we present the associated vulnerability and impact assessment that describes the importance of single features at national and European levels and considers several vulnerability indicators for tephra dispersal and deposition. At the national scale, we focus on physical, systemic and economic vulnerability of Iceland to tephra fallout, whereas at the European scale we focus on the systemic vulnerability of the air traffic system to tephra dispersal. This is the first vulnerability and impact assessment analysis of this type and, although it does not include all the aspects of physical and systemic vulnerability, it allows for identifying areas on which further specific analysis should be performed. Results include vulnerability maps for Iceland and European airspace and allow for the qualitative identification of the impacts at both scales in the case of an eruption occurring. Maps produced at the national scale show that tephra accumulation associated with all eruptive scenarios considered can disrupt the main electricity network, in particular in relation to an eruption of Askja. Results also show that several power plants would be affected if an eruption occurred at Hekla, Askja or Katla, causing a substantial systemic impact due to their importance for the Icelandic economy. Moreover, the Askja and Katla eruptive scenarios considered could have substantial impacts on agricultural activities (crops and pastures). At the European scale, eruptive scenarios at Askja and Katla are likely to affect European airspace, having substantial impacts, in particular, in the Keflavík and London flight information regions (FIRs), but also at FIRs above France, Germany and Scandinavia. Impacts would be particularly intense in the case of long-lasting activity at Katla. The occurrence of eruptive scenarios at Hekla is likely to produce high impacts at Keflavík FIR and London FIRs, and, in the case of higher magnitude, can also impact France's FIRs. Results could support land use and emergency planning at the national level and risk management strategies of the European air traffic system. Although we focus on Iceland, the proposed methodology could be applied to other active volcanic areas, enhancing the long-term tephra risk management. Moreover, the outcomes of this work pose the basis for quantitative analyses of expected impacts and their integration in a multi-risk framework.
Cities are nowadays faced with an unprecedented crisis, due above all to the impacts of climate change and the increasing social inequalities, which require innovative approaches and more effective tools. Resilience is widely interpreted as a key principle to re-frame urban policies, paving the way to cross-sectoral urban strategies capable of better coping with contemporary challenges. This contribution focuses in particular on the 100 Resilient Cities (100RC) Initiative, launched by the Rockefeller Foundation and addressed to support cities all over the world in developing and implementing strategies capable of increasing urban resilience in the face of multiple shocks and stresses, including climate change. In detail, based on the comparative analysis of two case studies, Rome and Athens, this paper aims at providing insights on the main strengths and weaknesses of cities’ resilience-building processes developed under the 100RC Initiative and at deeply analyzing the contribution of the delivered Resilience Strategies to the improvement of cities’ capacities to cope with contemporary challenges and above all with the increasing impacts of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.