Genome sequencing is a key strategy in the surveillance of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Latin America is the hardest-hit region of the world, accumulating almost 20% of COVID-19 cases worldwide. In Costa Rica, from the first detected case on March 6th to December 31st almost 170,000 cases have been reported. We analyzed the genomic variability during the SARS-CoV-2 pandemic in Costa Rica using 185 sequences, 52 from the first months of the pandemic, and 133 from the current wave. Three GISAID clades (G, GH, and GR) and three PANGOLIN lineages (B.1, B.1.1, and B.1.291) were predominant, suggesting multiple re-introductions from other regions. The whole-genome variant calling analysis identified a total of 283 distinct nucleotide variants, following a power-law distribution with 190 single nucleotide mutations in a single sequence, and only 16 mutations were found in >5% sequences. These mutations were distributed through the whole genome. The prevalence of worldwide-found variant D614G in the Spike (98.9% in Costa Rica), ORF8 L84S (1.1%) is similar to what is found elsewhere. Interestingly, the frequency of mutation T1117I in the Spike has increased during the current pandemic wave beginning in May 2020 in Costa Rica, reaching 29.2% detection in the full genome analyses in November 2020. This variant has been observed in less than 1% of the GISAID reported sequences worldwide in 2020. Structural modeling of the Spike protein with the T1117I mutation suggests a potential effect on the viral oligomerization needed for cell infection, but no differences with other genomes on transmissibility, severity nor vaccine effectiveness are predicted. In conclusion, genome analyses of the SARS-CoV-2 sequences over the course of the COVID-19 pandemic in Costa Rica suggest the introduction of lineages from other countries and the detection of mutations in line with other studies, but pointing out the local increase in the detection of Spike-T1117I variant. The genomic features of this virus need to be monitored and studied in further analyses as part of the surveillance program during the pandemic.
Genome sequencing is a key strategy in the surveillance of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Latin America is the hardest hit region of the world, accumulating almost 20% of COVID-19 cases worldwide. Costa Rica was first exemplary for the region in its pandemic control, declaring a swift state of emergency on March 16th that led to a low quantity of cases, until measures were lifted in early May. From the first detected case in March 6th to December 31st almost 170 000 cases have been reported in Costa Rica, 99.5% of them from May onwards. We analyzed the genomic variability during the SARS-CoV-2 pandemic in Costa Rica using 185 sequences, 52 from the first months of the pandemic, and 133 from the current wave.Three GISAID clades (G, GH, and GR) and three PANGOLIN lineages (B.1, B.1.1, and B.1.291) are predominant, with phylogenetic relationships that are in line with the results of other Latin American countries, suggesting introduction and multiple re-introductions from other regions of the world. The whole-genome variant calling analysis identified a total of 283 distinct nucleotide variants. These correspond mostly to non-synonymous mutations (51.6%, 146) but 45.6% (129) corresponded to synonymous mutations. The 283 variants showed an expected power-law distribution: 190 single nucleotide mutations were identified in single sequences, only 16 single nucleotide mutations were found in >5% sequences, and only two mutations in >50% genomes. These mutations were distributed through the whole genome. However, 63.6% were present in ORF1ab, 11.7% in Spike gene and 10.6% in the Nucleocapsid gene. Additionally, the prevalence of worldwide-found variant D614G in the Spike (98.9% in Costa Rica), ORF8 L84S (1.1%) is similar to what is found elsewhere. Interestingly, the frequency of mutation T1117I in the Spike has increased during the current pandemic wave beginning in May 2020 in Costa Rica, reaching 29.2% detection in the full genome analyses in November 2020. This variant has been observed in less than 1% of the GISAID reported sequences worldwide in all the 2020. Structural modeling of the Spike protein with the T1117I mutation suggest a potential effect on the viral oligomerization needed for cell infection, but no differences with other genomes on transmissibility, severity nor vaccine effectiveness are predicted. Nevertheless, in-vitro experiments are required to support these in-silico findings. In conclusion, genome analyses of the SARS-CoV-2 sequences over the course of COVID-19 pandemic in Costa Rica suggest introduction of lineages from other countries as travel bans and measures were lifted, similar to results found in other studies, as well as an increase in the Spike-T1117I variant that needs to be monitored and studied in further analyses as part of the surveillance program during the pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.