Methane is the second most important greenhouse gas after carbon dioxide contributing to humanmade global warming. Keeping to the Paris Agreement of staying well below two degrees warming will require a concerted effort to curb methane emissions in addition to necessary decarbonization of the energy systems. The fastest way to achieve emission reductions in the 2050 timeframe is likely through implementation of various technical options. The focus of this study is to explore the technical abatement and cost pathways for reducing global methane emissions, breaking reductions down to regional and sector levels using the most recent version of IIASA's Greenhouse gas and Air pollution Interactions and Synergies (GAINS) model. The diverse human activities that contribute to methane emissions make detailed information on potential global impacts of actions at the regional and sectoral levels particularly valuable for policy-makers. With a global annual inventory for 1990-2015 as starting point for projections, we produce a baseline emission scenario to 2050 against which future technical abatement potentials and costs are assessed at a country and sector/technology level. We find it technically feasible in year 2050 to remove 54 percent of global methane emissions below baseline, however, due to locked in capital in the short run, the cumulative removal potential over the period 2020-2050 is estimated at 38 percent below baseline. This leaves 7.7 Pg methane released globally between today and 2050 that will likely be difficult to remove through technical solutions. There are extensive technical opportunities at low costs to control emissions from waste and wastewater handling and from fossil fuel production and use. A considerably more limited technical abatement potential is found for agricultural emissions, in particular from extensive livestock rearing in developing countries. This calls for widespread implementation in the 2050 timeframe of institutional and behavioural options in addition to technical solutions.
The rapidly rising generation of municipal solid waste jeopardizes the environment and contributes to climate heating. Based on the Shared Socioeconomic Pathways, we here develop a global systematic approach for evaluating the potentials to reduce emissions of greenhouse gases and air pollutants from the implementation of circular municipal waste management systems. We contrast two sets of global scenarios until 2050, namely baseline and mitigation scenarios, and show that mitigation strategies in the sustainability-oriented scenario yields earlier, and major, co-benefits compared to scenarios in which inequalities are reduced but that are focused solely on technical solutions. The sustainability-oriented scenario leaves 386 Tg CO2eq/yr of GHG (CH4 and CO2) to be released while air pollutants from open burning can be eliminated, indicating that this source of ambient air pollution can be entirely eradicated before 2050.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.