Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles-hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta-exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)-the strongest on record-combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the importance of region-wide collaborations.
Long-term tagging studies, particularly those that target life stages away from nesting beaches can provide important insights in key life history traits, which are essential for the effective management of endangered species. The coast of Bahia hosts important green turtle foraging areas, but information on demography, spatial use and foraging ecology in this region is lacking. Here, we (1) examined the size-class structure of green turtles in Bahia, (2) compared the size distribution from Bahia to other foraging aggregations in Brazil, and (3) studied the somatic growth dynamics. Additionally, we investigated the (4) diet, (5) habitat use and (6) activity patterns of green turtles along shallow reefs in Bahia. From 2009 to 2013, 322 green turtles were captured and 44 were recaptured between 7 and 1218 days after initial tagging. Curved carapace length varied from 32.9 to 122.5 cm. Mean annual growth rate was 3.03 ± 1.18 cm year−1. The diet of the turtles was mainly composed of red algae of the family Gelidiaceae, Gelidiellaceae and Cystocloniaceae. There was a positive relationship between the abundance of red algae and the number of turtle sightings, with a significant increase in foraging activity during late afternoon. This study highlights the importance of this area as a mixed foraging aggregation of juvenile and adult green turtles, and reveals that foraging grounds for this species in Brazil exhibit southern immature-dominated assemblages and northern mixed aggregations. Areas with high aggregation of green turtles comprising individuals from different life stages must be targeted for conservation management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.