Tree bark characteristics influence epiphyte establishment and survival and consequently the way in which epiphytes are distributed on trees. Tree species with peeling bark have been reported as poor epiphyte hosts. We analyzed the distribution and seedling mortality of two Tillandsia species (Bromeliaceae) in relation to rate of bark peeling of Bursera fagaroides (Burseraceae). The highest peeling rate (0.12% per day) took place on the trunk and the lowest rate on twigs (0.04% per day; branches B2 cm in diameter). The highest proportion of Tillandsia plants appeared on twigs. The distributions of juvenile and adult plants on twigs were higher than those expected based on the distribution of first-year seedlings, suggesting that on twigs, survival could be greater than on trunks and branches, canopy areas where peeling is faster. On the trunk and branches, in contrast, the proportion of juveniles and adults were similar to or less than that expected for first-year seedlings. The main cause of mortality was peeling and the area of minor overall mortality was the trunk, suggesting that this area should be favored as the main distribution area for the Tillandsia species but is not. Our results show that the peeling rate of B. fagaroides depends on branch size and suggest that the Tillandsia distribution depends not only on peeling rate but also on seed dispersion. We suggest that to colonize B. fagaroides epiphytes would either have adaptations to counteract the peeling rate or should occur in the areas of lowest peeling rate located in the exterior crown of trees.
Pollen-mediated gene flow is a major driver of spatial genetic structure in plant populations. Both individual plant characteristics and site-specific features of the landscape can modify the perceived attractiveness of plants to their pollinators and thus play an important role in shaping spatial genetic variation. Most studies of landscape-level genetic connectivity in plants have focused on the effects of interindividual distance using spatial and increasingly ecological separation, yet have not incorporated individual plant characteristics or other at-site ecological variables. Using spatially explicit simulations, we first tested the extent to which the inclusion of at-site variables influencing local pollination success improved the statistical characterization of genetic connectivity based upon examination of pollen pool genetic structure. The addition of at-site characteristics provided better models than those that only considered interindividual spatial distance (e.g. IBD). Models parameterized using conditional genetic covariance (e.g. population graphs) also outperformed those assuming panmixia. In a natural population of Cornus florida L. (Cornaceae), we showed that the addition of at-site characteristics (clumping of primary canopy opening above each maternal tree and maternal tree floral output) provided significantly better models describing gene flow than models including only between-site spatial (IBD) and ecological (isolation by resistance) variables. Overall, our results show that including interindividual and local ecological variation greatly aids in characterizing landscape-level measures of contemporary gene flow.
All species have limited geographic distributions; but the ecological and evolutionary mechanisms causing range limits are largely unknown. That many species' geographic range limits are coincident with niche limits suggests limited evolutionary potential of marginal populations to adapt to conditions experienced beyond the range. We provide a test of range limit theory by combining population genetic analysis of microsatellite polymorphisms with a transplant experiment within, at the edge of, and 60 km beyond the northern range of a coastal dune plant. Contrary to expectations, lifetime fitness increased toward the range limit with highest fitness achieved by most populations at and beyond the range edge. Genetic differentiation among populations was strong, with very low, nondirectional gene flow suggesting range limitation via constraints to dispersal. In contrast, however, local adaptation was negligible, and a distance-dependent decline in fitness only occurred for those populations furthest from home when planted beyond the range limit. These results challenge a commonly held assumption that stable range limits match niche limits, but also raise questions about the unique value of peripheral populations in expanding species' geographical ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.