In clonal pituitary GH 3 cells, spontaneous action potentials drive the opening of Ca v 1 (L-type) channels, leading to Ca 2+ transients that are coupled to prolactin gene transcription. Nerve growth factor (NGF) has been shown to stimulate prolactin synthesis by GH 3 cells, but the underlying mechanisms are unknown. Here we studied whether NGF influences prolactin gene expression and Ca 2+ currents. By using RT-PCR, NGF (50 ng ml −1 ) was found to augment prolactin mRNA levels by ∼80% when applied to GH 3 cells for 3 days. A parallel change in the prolactin content was detected by Western blotting. Both NGF-induced responses were mimicked by an agonist (Bay K 8644) and prevented by a blocker (nimodipine) of L-type channels. In whole-cell patch-clamp experiments, NGF enhanced the L-type Ca 2+ current by ∼2-fold within 60 min. This effect reversed quickly upon growth factor withdrawal, but was maintained for days in the continued presence of NGF. In addition, chronic treatment (≥ 24 h) with NGF amplified the T-type current, which flows through Ca v 3 channels and is thought to support pacemaking activity. Thus, NGF probably increases the amount of Ca 2+ that enters per action potential and may also induce a late increase in spike frequency. MC192, a specific antibody for the p75 neurotrophin receptor, but not tyrosine kinase inhibitors (K252a and lavendustin A), blocked the effects of NGF on Ca 2+ currents. Overall, the results indicate that NGF activates the p75 receptor to cause a prolonged increase in Ca 2+ influx through L-type channels, which in turn up-regulates the prolactin mRNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.