We present a study of the streamer-to-spark transition in a self-pulsing dc-driven discharge called a transient spark (TS). The TS is a streamer-to-spark transition discharge with short spark duration (∼10-100 ns), based on charging and discharging of the internal capacity of the electric circuit with repetition frequency 1-10 kHz. The TS can be maintained under relatively low energy conditions (0.1-1 mJ pulse −1). It generates a very reactive non-equilibrium air plasma applicable for flue gas cleaning or bio-decontamination. Thanks to the short spark current pulse duration, the steady-state gas temperature, measured at the beginning of the streamers initiating the TS, increases from an initial value of ∼300 K only up to ∼550 K at 10 kHz. The streamer-to-spark transition is governed by the subsequent increase in the gas temperature in the plasma channel up to ∼1000 K. This breakdown temperature does not change with increasing repetition frequency f. The heating after the streamer accelerates with increasing f , leading to a decrease in the average streamer-to-spark transition time from a few µs to less than 100 ns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.