Turmeric, obtained from the rhizomes of Curcuma longa, is used in South Asia as a traditional medicine for the treatment of epilepsy. To date, in vivo studies on the anticonvulsant activity of turmeric have focused on its principal curcuminoid, curcumin. However, poor absorption and rapid metabolism have limited the therapeutic application of curcumin in humans. To explore the therapeutic potential of turmeric for epilepsy further, we analyzed its anticonvulsant activity in a larval zebrafish seizure assay. Initial experiments revealed that the anticonvulsant activity of turmeric in zebrafish larvae cannot be explained solely by the effects of curcumin. Zebrafish bioassay-guided fractionation of turmeric identified bisabolene sesquiterpenoids as additional anticonvulsants that inhibit PTZ-induced seizures in both zebrafish and mice. Here, we present the first report of the anticonvulsant properties of bisabolene sesquiterpenoids and provide evidence which warrants further investigation toward the mechanistic understanding of their neuromodulatory activity.
BackgroundAn inadequate combination of prescription drugs with food or medicinal plants could cause adverse effects in patients or produce negative therapeutic results. Therefore, this generic systematic review protocol aims to identify and synthesize the literature on clinical characteristics and safety issues of these types of pharmacological interactions occurring in children, adolescents, adults, pregnant/lactating women, and older adults.Methods/designThis generic protocol follows the stated guidelines from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) statement. A literature search will be performed in PubMed, Scopus, and Virtual Health Library (VHL) electronic databases from 1960 till present for studies reporting clinical characteristics and safety issues associated with pharmacological interactions occurring between prescription drugs and food or medicinal plants in participants from birth-age to ≥ 65-year-old, including pregnant/lactating women. Lateral searching will be carried out in PubMed via related citation. Two reviewers will carry out an independent evaluation of eligible studies as well as the corresponding data extraction of the selected ones. Subsequently, the methodological quality evaluation of the selected articles will be completed using the corresponding Joanna Briggs Institute Checklists. Moreover, the quality of evidence will be graded according to the criteria of the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) Working Group. Quantitative research in humans comprising clinical trials and clinical, comparative and, observational studies will be included. The main outcomes of this protocol involve reported potential food-drug and herb-drug interactions, associated safety issues, and adverse reactions along with the generic name of the prescribed drug and the scientific name of the food and medicinal plants involved in these types of pharmacological interactions. Finally, findings extracted from the selected studies will be summarized in a narrative synthesis.DiscussionThis generic systematic review protocol seeks to synthesize and critically evaluate current knowledge besides to identify any comprehension gaps in the concurrent administration of prescription drugs with food and herbs. By achieving a better understanding of this topic, this information will allow healthcare professionals to develop useful strategies to recognize, manage, and prevent these types of pharmacological interactions at different age stages, including pregnant/lactating women.Systematic review registrationPROSPERO CRD42018117308
Danshen or Chinese red sage (Salvia miltiorrhiza, Bunge) is used by traditional Chinese medicine (TCM) practitioners to treat neurological, cardiovascular, and cerebrovascular disorders and is included in some TCM formulations to control epileptic seizures. In this study, acetonic crude extracts of danshen inhibited pentylenetetrazol (PTZ)-induced seizure activity in zebrafish larvae. Subsequent zebrafish bioassay-guided fractionation of the extract resulted in the isolation of four major tanshinones, which suppressed PTZ-induced activity to varying degrees. One of the active tanshinones, tanshinone IIA, also reduced c-fos expression in the brains of PTZ-exposed zebrafish larvae. In rodent seizure models, tanshinone IIA showed anticonvulsive activity in the mouse 6-Hz psychomotor seizure test in a biphasic manner and modified seizure thresholds in a complex manner for the mouse i.v. PTZ seizure assay. Interestingly, tanshinone IIA is used as a prescription drug in China to address cerebral ischemia in patients. Here, we provide the first in vivo evidence demonstrating that tanshinone IIA has anticonvulsant properties as well. KEYWORDS: Tanshinone IIA, Salvia miltiorrhiza, zebrafish PTZ model, mouse seizure models, pentylenetetrazol E pilepsy affects approximately 60 million people worldwide, of whom 30% suffer from pharmacoresistant seizures. The economics of maintaining a cost-effective therapeutic regimen hinge on its long-term efficacy and the probability of patients developing treatment-resistant seizures or possible side-effects ranging from sedation to Steven−Johnson syndrome.1 To address such issues, there is an ongoing hunt for new antiepileptic drugs (AEDs) with novel mechanisms of action and with minimal or no side-effects.There is a resurgence of interest in exploring plant, microbial, and marine resources used in traditional medicine for potential drug leads. According to the World Health Organization (WHO), 70−80% of the population in developing and developed countries have used, or depend on such therapies, which became the impetus for efforts in bioprospecting and drug development.2 Despite prevalent skepticism, as many as 25% of pharmaceutical drugs on the market are plant-based and were discovered through investigations on traditional or folk medicine practiced by different cultures.1,2 The rationale behind this approach in drug discovery is that small molecules isolated or derived from natural sources offer a more diverse set of structures compared with compounds synthesized through medicinal chemistry or combinatorial techniques. 2Each plant or marine extract can be treated as a library potential of hits, which can be screened using an appropriate medium-to high-throughput in vivo model such as zebrafish (Danio rerio), a freshwater teleost of the Cyprinidae family.3,4 In screening for potential hits and leads for AED development, we have previously described the use of larval zebrafish as a platform for pinpointing AED-like activity of small molecules isolated from plant sources.3,4 ...
Epilepsy is a neurological disease that affects more than 70 million people worldwide and is characterized by the presence of spontaneous unprovoked recurrent seizures. Existing anti-seizure drugs (ASDs) have side effects and fail to control seizures in 30% of patients due to drug resistance. Hence, safer and more efficacious drugs are sorely needed. Flavonoids are polyphenolic structures naturally present in most plants and consumed daily with no adverse effects reported. These structures have shown activity in several seizure and epilepsy animal models through allosteric modulation of GABA receptors, but also via potent anti-inflammatory action in the brain. As such, dietary flavonoids offer an interesting source for ASD and anti-epileptogenic drug (AED) discovery, but their pharmaceutical potential is often hampered by metabolic instability and low oral bioavailability. It has been argued that their drug-likeness can be improved via methylation of the free hydroxyl groups, thereby dramatically enhancing metabolic stability and membrane transport, facilitating absorption and highly increasing bioavailability. Since no scientific data is available regarding the use of methylated flavonoids in the fight against epilepsy, we studied naringenin (NRG), kaempferol (KFL), and three methylated derivatives, i.e., naringenin 7-O-methyl ether (NRG-M), naringenin 4',7-dimethyl ether (NRG-DM), and kaempferide (4'-O-methyl kaempferol) (KFD) in the zebrafish pentylenetetrazole (PTZ) seizure model. We demonstrate that the methylated flavanones NRG-DM and NRG-M are highly effective against PTZ-induced seizures in larval zebrafish, whereas NRG and the flavonols KFL and KFD possess only a limited activity. Moreover, we show that NRG-DM is active in two standard acute mouse seizure models, i.e., the timed i.v. PTZ seizure model and the 6-Hz psychomotor seizure model. Based on these results, NRG-DM is proposed as a lead compound that is worth further investigation for the treatment of generalized seizures and drug-resistant focal seizures. Our data therefore highlights the potential of methylated flavonoids in the search for new and improved ASDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.