This research provides an analytical and predictive framework, based on state-of-the-art machine-learning (ML) algorithms (random forest (RF) and generalized additive models (GAM)), that can be used to assess and improve the Common Agricultural Policy (CAP) impact/performance over the agricultural and rural environments, easing the identification of proper instruments that can be used by EU policy makers in CAP’s financial management. The applied methodology consists of elaborating a custom-developed analytical framework based on a dataset containing 22 relevant indicators, considering four main dimensions that describe the intricacies of the EU agricultural and rural environment, in the CAP context: rural, emissions, macroeconomic, and financial. The results highlight that an increase of the agricultural research and development funding, as well as the agriculture employment rate, negatively influence the degree of rural poverty. The rural GDP per capita is influenced by the size of the employment rate in agriculture. It seems that environmental sustainability, identified by both fertilizers used and emissions from agriculture parameters, significantly influences the GDP per capita. In predicting emissions in agriculture, the direct payment, degree of rural poverty, fertilizer use, employment in agriculture, and agriculture labor productivity are the main independent parameters with the highest future importance. It was found that when predicting direct payments, the rural employment rate, employment in agriculture, and gross value added must be considered the most. The agricultural, entrepreneurial income prediction is mainly influenced by the total factor productivity, while agricultural research and development investments depend on gross value added, direct payments, and gross value added in the agricultural sector. Future research, related to prediction models based on CAP indicators, should also consider the marketing dimension. It is recommended for direct payments to be used to invest in upgrading the fertilizers technologies, since environmental sustainability will influence economic growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.