In recent years, mulberry has acquired a special importance due to its phytochemical composition and its beneficial effects on human health, including antioxidant, anticancer, antidiabetic and immunomodulatory effects. Botanical parts of Morus sp. (fruits, leaves, twigs, roots) are considered a rich source of secondary metabolites. The aim of our study was to highlight the phytochemical profile of each of the botanical parts of Morus tree, their health benefits and applications in food industry with an updated review of literature. Black and white mulberries are characterized in terms of predominant phenolic compounds in correlation with their medical applications. In addition to anthocyanins (mainly cyanidin-3-O-glucoside), black mulberry fruits also contain flavonols and phenolic acids. The leaves are a rich source of flavonols, including quercetin and kaempferol in the glycosylated forms and chlorogenic acid as predominant phenolic acids. Mulberry bark roots and twigs are a source of prenylated flavonoids, predominantly morusin. In this context, the exploitation of mulberry in food industry is reviewed in this paper, in terms of developing novel, functional food with multiple health-promoting effects.
The genus Viscum includes many species that are mainly distributed in Europe, Africa, Asia, America, and Australia. Viscum extracts or their various preparations are widely used as complementary and alternative medicines in the treatment of various ailments. In the present review, articles related to the phytochemical composition of mistletoe were selected, depending on the host tree on which it grows, as well as articles in which its beneficial effects were highlighted. Viscum contains different active ingredients, including lectins, viscotoxins along with phenolic acids, flavonoids, alkaloids, terpenoids, and polysaccharides. Based on its composition, mistletoe extract is associated with multiple bioactivities, including anticancer, anti-inflammatory, and cardiovascular disease, attenuating the side effects of chemotherapy and enhancing immunity. The purpose of this review was to highlight the link between the host tree and the bioactive components of mistletoe such as lectin and viscotoxin, with a focus on phenolic compounds such as flavonoids and phenolic acids. The potential therapeutic effects of mistletoe are summarized by subspecies and host trees. Numerous mistletoe-based patents with various applications have been developed and presented in this review. Mistletoe is a medicinal plant with great biological potential that is worth exploring for various targeted treatments.
Viscum album L. subsp. album is a hemiparasitic plant that is recognized as a medicinal plant due to its beneficial effects, including anti-tumor activity, antioxidant, anti-inflammatory, anti-hepatotoxic, hypoglycemic, and antimicrobial properties as well as for lowering blood pressure. On the other hand, mistletoe is a biotic stressor for both deciduous trees and conifers. Our main aim was to evidence the influence of mistletoe on the content of chlorophylls, proline, total phenols, flavonoids, and antioxidant capacity of leaves from tree host trees (Malus domestica, Prunus domestica, and Populus alba) that grow on the northwest of Romania. In addition, HPLC-DAD-MS-ESI+ was used to analyze the phenolic acid and flavonoid profiles of V. album L. subsp. album leaves according to their parasitized hosts. A significant decrease in chlorophyll a level of approximately 32% was detected in poplars infested with mistletoe, followed by infested apples and plums with pigment reductions of 29.25% and 9.65%, respectively. The content of total phenols and flavonoids in the parasitized trees was higher compared to the non-parasitized ones. In the case of poplar, which presented the highest incidence of mistletoe infestation (70.37%), the content of total phenols in the leaves was two times higher compared to non-infested leaves. Based on HPLC chromatographic analysis, leaves of mistletoe growing on apple (VAM) had the highest content of phenolic acids (7.833 mg/g dw), followed by mistletoe leaves on poplar (VAO) and plum (VAP) (7.033 mg/g dw and, respectively, 5.559 mg/g dw). Among the flavonols, the predominant component was Rhamnazin glucosides in the amount of 1.025 ± 0.08 mg/g dw in VAO, followed by VAP and VAM (0.514 ± 0.04 and 0.478 ± 0.04 mg/g dw, respectively). Although our results show that mistletoe negatively influences the host trees, it is still a valuable plant that must be exploited to bring benefits to human health.
The healing of skin wounds remains an important concern in medicine, especially in chronic wounds caused by various diseases such as diabetes. Using herbs or herbal products to heal skin wounds is a therapeutic challenge for traditional medicine. In this context, the main aim of our work was to highlight the in vitro healing potential of Stellaria media (L.) Vill. (SM) extract using the scratch assay on normal human dermal fibroblasts (NHDF). The ability to stimulate cell migration and proliferation under the influence of different concentrations of SM extract (range between 12.5 and 200 µg/mL) was determined compared to the control (untreated in vitro-simulated wound) and positive control (allantoin 50 µg/mL). Our results showed that the concentration of 100 µg/mL SM extract applied on the simulated wound recorded the strongest and fastest (24 h) migration (with wound closure) and proliferation of NHDF compared with the control. In addition, the SM extract was characterized in terms of bioactive compounds (total phenols and flavonoids content), antioxidant capacity (FRAP (The Ferric-Reducing Antioxidant Power) assay and electrochemical method), and antimicrobial activity. The results show that the SM extract contains a considerable amount of polyphenols (17.19 ± 1.32 mg GAE/g dw and 7.28 ± 1.18 mg QE/g dw for total phenol and flavonoid content, respectively) with antioxidant capacity. Antimicrobial activity against Gram-positive bacteria (S. aureus) is higher than E. coli at a dose of 15 µg/mL. This study showed that Stellaria media is a source of polyphenols compounds with antioxidant capacity, and for the first time, its wound healing potential was emphasized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.