Past studies revealed that NGF and fibroblast growth factor (FGF) prevent the death of PC 12 pheochromocytoma cells that otherwise occurs in serum-free medium. Additional agents were tested here for their abilities to promote long-term survival of naive and NGF-pretreated (primed) PC 12 cells in serum-free conditions. Forskolin and permeant cAMP analogs effectively prevented serum-free cell death, as did micromolar levels of insulin and 10–100-nM levels of insulin-like growth factors I and II. In contrast to NGF and FGF, none of these agents caused neuronal differentiation of naive cells or neurite regeneration by primed cells. Each of the agents also prevented rapid cell death in a balanced salt solution, thus apparently ruling out a mechanism dependent on regulation of nutrient uptake. Epidermal growth factor and elevated K+ appeared to slow the rate of cell death, but did not promote long-term survival; phorbol ester, dexamethasone, or vanadate did not prevent cell death. Each of the survival-promoting agents was effective even when macromolecular synthesis was blocked. Because the synthesis inhibitors themselves did not significantly prevent cell death, such findings indicate that survival was promoted by mechanisms that do not require synthesis of RNA or protein. In addition, various lines of experimental evidence (using the kinase inhibitor K-252a or PC 12 cell variants deficient either in protein kinase A activity or in responsiveness to NGF) further suggested that the effective agents maintain survival by independent initial pathways. Regulation of protein kinase activity appears to be a common feature of each pathway and may therefore play a key convergent role in mediating prevention of cell death.
Abstract. Purine analogues were used in this study to dissect specific steps in the mechanism of action of nerve growth factor (NGF). Protein kinase N (PKN) is an NGF-activated serine protein kinase that is active in the presence of Mn ÷÷. The activity of PKN was inhibited in vitro by purine analogues, the most effective of which was 6-thioguanine (apparent K~ = 6 #M). Several different criteria indicated that 6-thioguanine is not a general inhibitor of protein kinases and that it is relatively specific for PKN. For instance, it did not affect protein kinases A or C and was without effect on the overall level and pattern of protein phosphorylation by either intact or broken PC12 cells. Since purine analogues rapidly and effectively enter cells, they were also assessed for their actions on both transcription-dependent and -independent responses of PC12 cells to NGE NGF-promoted neurite regeneration was reversibly suppressed by the analogues and at concentrations very similar to those that inhibit PKN. Comparable concentrations of the analogues also blocked NGF-stimulated induction of ornithine decarboxylase activity. In contrast to its inhibition of neurite regeneration and ornithine decarboxylase induction, 6-thioguanine did not suppress NGF-dependent induction of c-los mRNA expression. Thus, purine analogues such as 6-thioguanine appear capable of differentially suppressing some, but not other actions of NGE These findings suggest the presence of multiple pathways in the NGF mechanism and that these can be dissected with purine analogues. Moreover, these data are compatible with a role for protein kinase N in certain of these pathways.S INCE the characterization of nerve growth factor (NGF) ~ (27) as a neurotrophic agent necessary for the development and function of certain peripheral and CNS neurons (11,21,26,32), many events in its mode of action have been revealed (cf. reference 25 for review), but we are still far from a complete understanding of the entire process. The biological effects of NGF comprise both transcription-dependent 05, 24) and -independent responses (4, 18). To provide neuronal differentiation and trophic support, these responses must be coordinated in the cell by means that are still unknown. In this regard, many studies have been performed with the PC12 rat pheochromocytoma cell line (13), a model system that has been extensively used to examine the NGF mechanism of action.A parameter that is likely to be causally involved in many of the events controlled by NGF in the target cell is the regulation of protein phosphorylation. It is well-documented that NGF, like many other growth factors, promotes rapid changes in the phosphorylation of specific cellular proteins 1. Abbreviations used in this paper: 2-AP, 2-aminopurine; NGF, nerve growth factor; ODC, ornithine decarboxylase; PKA, cyclic AMP-dependent protein kinase; PKC, Ca++/phospholipid-dependent protein kinase; PKN, protein kinase N; 6-TG, 6-thioguanine. (1,18,19,34), as well as regulation of several different protein kinase activitie...
Tests have been made of the action of the methyltransferase inhibitors 5'-S-methyl adenosine, 5'-S-(2-methyl-propyl)-adenosine, and 3-deaza-adenosine ± L-homocysteine thiolactone, on nerve growth factor (NGF)-dependent events in the rat pheochromocytoma line PC12 . Each of these agents inhibited NGF-dependent neurite outgrowth at concentrations of the order of millimolar. Slow initiation of neurite outgrowth over several days and more rapid regeneration of neurites (=1 d) were blocked, as was the priming mechanism necessary for genesis of neurites . The inhibitions were reversible in that PC12 cells maintained for several days in the presence of inhibitors grew neurites normally after washout of these agents. Other NGF-dependent responses of the PC12 line (i.e., induction of ornithine decarboxylase activity [over 4 h], enhancement of tyrosine hydroxylase phosphorylation [over 1 h], and rapid changes in cell surface morphology [30 s onward]) were inhibited by each of the agents . In contrast, corresponding epidermal growth factor-dependent responses in ornithine decarboxylase activity, phosphorylation, and cell surface morphology were not blocked, but instead either unaffected or enhanced, by the methylation inhibitors. These inhibitors did not act by blockade of binding of NGF to high-,or low-affinity cell surface receptors, though they partially inhibited internalization of [ 125 1]NGF . The inhibition of rapidly-induced NGF-dependent events and the differential inhibition of responses to NGF and epidermal growth factor imply that the methyltransferase inhibitors specifically block one of the first steps in the mechanistic pathway for NGF .
The PC12 clone is a line of rat pheochromocytoma cells that undergoes neuronal differentiation in the presence of NGF protein. In the absence of NGF, PC12 cells are electrically inexcitable, while after several weeks of NGF treatment they develope Na+ action potentials. Past estimates made by measuring binding of 3H-saxitoxin (STX) indicate that NGF treatment brings about a large increase in Na channel density that is of sufficient magnitude to account for the induction of excitability. We have now used 22Na uptake to measure the Na permeability of PC12 cells before and after long-term NGF treatment. Treatment with NGF does not change the resting Na+ permeability. The alkaloid toxins veratridine and batrachotoxin (BTX) and scorpion toxin were used to activate Na channels. Such studies demonstrate that these toxins induce TTX-sensitive Na uptake in both NGF-treated and untreated cells and reveal differences in functional Na channel numbers per cell and per unit of membrane area that are similar to those found in the STX binding studies. On the other hand, affinities for drugs that activate these channels are not affected by NGF treatment. We also find that NGF-treated PC12 cells contain a population of Na channels with low affinity for TTX. These channels account for 5–20% of total BTX or veratridine-stimulated flux. Thus, NGF has 2 effects regarding the Na channels of PC12 cells: it increases the number of functional Na channels that otherwise behave similarly to those present before NGF treatment, and it induces the presence of TTX-resistant Na channels. These findings indicate that the PC12 model system may serve to study the developmental regulation of Na channel expression and properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.