Colorectal cancer represents the fourth highest mortality rate among cancer types worldwide. An understanding of the molecular mechanisms that regulate their progression can prevents or reduces mortality due to this disease. Epithelial cells present an apical junctional complex connected to the actin cytoskeleton, which maintains the dynamic properties of this complex, tissue architecture and cell homeostasis. Several studies have indicated that apical junctional complex alterations and actin cytoskeleton disorganization play a critical role in epithelial cancer progression. However, few studies have examined the existence of an interrelation between these 2 components, particularly in colorectal cancer. This review discusses the recent progress toward elucidating the role of alterations of apical junctional complex constituents and of modifications of actin cytoskeleton organization and discusses how these events are interlinked to modulate cellular responses related to colorectal cancer progression toward successful metastasis.
Background
Colorectal cancer (CRC) is among the deadliest cancers, wherein early dissemination of tumor cells, and consequently, metastasis formation, are the main causes of mortality and poor prognosis. Cofilin-1 (CFL-1) and its modulators, LIMK1/SSH1, play key roles in mediating the invasiveness by driving actin cytoskeleton reorganization in various cancer types. However, their clinical significance and prognostic value in CRC has not been fully explored. Here, we evaluated the clinical contribution of these actin regulators according to TNM and consensus molecular subtypes (CMSs) classification.
Methods
CFL-1, LIMK1 and SSH1 mRNA/protein levels were assessed by real-time PCR and immunohistochemical analyses using normal adjacent and tumor tissues obtained from a clinical cohort of CRC patients. The expression levels of these proteins were associated with clinicopathological features by using the chi square test. In addition, using RNA-Seq data of CRC patients from The Cancer Genome Atlas (TCGA) database, we determine how these actin regulators are expressed and distributed according to TNM and CMSs classification. Based on gene expression profiling, Kaplan–Meier survival analysis was used to evaluated overall survival.
Results
Bioinformatic analysis revealed that LIMK1 expression was upregulated in all tumor stages. Patients with high levels of LIMK1 demonstrated significantly lower overall survival rates and exhibited greater lymph node metastatic potential in a clinical cohort. In contrast, CFL-1 and SSH1 have expression downregulated in all tumor stages. However, immunohistochemical analyses showed that patients with high protein levels of CFL-1 and SSH1 exhibited greater lymph node metastatic potential and greater depth of local invasion. In addition, using the CMSs classification to evaluate different biological phenotypes of CRC, we observed that LIMK1 and SSH1 genes are upregulated in immune (CMS1) and mesenchymal (CMS4) subtypes. However, patients with high levels of LIMK1 also demonstrated significantly lower overall survival rates in canonical (CMS2), and metabolic (CMS3) subtypes.
Conclusions
We demonstrated that CFL-1 and its modulators, LIMK1/SSH1, are differentially expressed and associated with lymph node metastasis in CRC. Finally, this expression profile may be useful to predict patients with aggressive signatures, particularly, the immune and mesenchymal subtypes of CRC.
The activation of the nuclear factor-κB (NF-κB) pathway has been associated with the development and progression of colorectal cancer (CRC). Parthenolide (PTL), a well-known inhibitor of the NF-κB pathway, has emerged as an alternative treatment. However, whether PTL activity is tumor cell-specific and dependent on the mutational background has not been defined. This study investigated the antitumor role of PTL after tumor necrosis factor-α (TNF-α) stimulation in various CRC cell lines with different mutational statuses of TP53. We observed that CRC cells displayed different patterns of basal p-IκBα levels; PTL reduced cell viability according to p-IκBα levels and p-IκBα levels varied among the cell lines according to the time of TNF-α stimulation. High concentrations of PTL reduced more effectively p-IκBα levels than low doses of PTL. However, PTL increased total IκBα levels in Caco-2 and HT-29 cells. In addition, PTL treatment downregulated p-p65 levels in HT-29 and HCT-116 cells stimulated by TNF-α in a dose-dependent manner. Moreover, PTL induced cell death via apoptosis and reduced the proliferation rate of TNF-α-treated HT-29 cells. Finally, PTL downregulated the messenger RNA levels of interleukin-1β, a downstream cytokine of NF-κB, reverted the E-cadherin-mediated disorganization of cell-cell contacts, and decreased the invasion of HT-29 cells. Together, these results suggest a differential antitumoral activity of PTL on CRC cells with different mutational statuses of TP53, modulating cell death, survival, and proliferation underlying the NF-κB pathway TNF-α-induced. Therefore, PTL has emerged as a potential treatment for CRC in an inflammatory NF-κB-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.