The design and production of anisotropic composites and nanocomposites has become increasingly relevant in materials science and engineering because they provide an opportunity of enhancing and adapting the properties of a material for specialized applications. This article reviews the strategies that have been developed to achieve anisotropy based on the position and orientation of the dispersed phase in polymer composites including polymer nanocomposites. Flow and electric field-driven alignment methodologies are briefly described, which is followed by a focus on magnetically oriented composites. The use of magnetic fields for this purpose has been of particular interest in recent years due to its ease of use and the variety of materials on which this method can be applied. Strong magnetic fields are required to align diamagnetic fillers. However, the modification of particles with low magnetic susceptibilities with magnetic nanoparticles (i.e. iron oxide nanoparticles) has been proven to be a successful approach to broaden the capabilities of magnetic alignment in polymer composites. The development of filler manipulation techniques opens the possibility to mimic complex biological structures that promise to improve the mechanical properties of bioinspired composites and even achieve advanced functionalities in self-shaping materials for example.
This Feature Article evaluates ongoing efforts to adapt adhesives toward the goal of zero-waste living and suggests the most promising future directions. Adhesives are not always considered in zero-waste manufacturing because they represent only a small fraction of a product and offer no additional functionality. However, their presence restricts the reintegration of constituent parts into a circular economy, so a new generation of adhesives is required. Furthermore, their production often leads to harmful pollutants. Here, two main approaches toward addressing these problems are considered: first, the use of natural materials that replace petroleum-based polymers from which conventional adhesives are made and second, the production of dismantlable adhesives capable of debonding on demand with the application of an external stimulus. These approaches, either individually or combined, offer a new paradigm in zero-waste industrial production and consumer applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.