Students are more likely to learn in college science, technology, engineering, and math (STEM) classrooms when instructors use teacher discourse moves (TDMs) that encourage student engagement and learning. However, although teaching practices are well studied, TDMs are not well understood in college STEM classrooms. In STEM courses at a minority-serving institution (MSI; n = 74), we used two classroom observation protocols to investigate teaching practices and TDMs across disciplines, instructor types, years of teaching experience, and class size. We found that instructors guide students in active learning activities, but they use authoritative discourse approaches. In addition, chemistry instructors presented more than biology instructors. Also, teaching faculty had relatively high dialogic, interactive discourse, and neither years of faculty teaching experience nor class size had an impact on teaching practices or TDMs. Our results have implications for targeted teaching professional development efforts across instructor and course characteristics to improve STEM education at MSIs.
The Students Assessing Teaching and Learning (SATAL) Program at the University of California, Merced offers assessment support for faculty and program leads while engaging diverse, cross-program undergraduates in students-as- partners experiences in a work setting. Grounded in the Students as Partners (SaP) principles of respect, responsibility, and reciprocity (Cook-Sather, Bovill, & Felten, 2014), our assessment of the SATAL program reveals benefits for both students and faculty acting as co-creators of teaching and learning. Using the SATAL program as an example, we offer readers a logic model to guide the development of student-faculty-staff partnerships and assess the impact of these programs in a more meaningful and consequential manner. We also provide lessons learned from our evolving SATAL program to support others interested in designing sustainable student assisted assessment partnerships.
Background
The University of California system has a novel tenure-track education-focused faculty position called Lecturer with Security of Employment (working titles: Teaching Professor or Professor of Teaching). We focus on the potential difference in implementation of active-learning strategies by faculty type, including tenure-track education-focused faculty, tenure-track research-focused faculty, and non-tenure-track lecturers. In addition, we consider other instructor characteristics (faculty rank, years of teaching, and gender) and classroom characteristics (campus, discipline, and class size). We use a robust clustering algorithm to determine the number of clusters, identify instructors using active learning, and to understand the instructor and classroom characteristics in relation to the adoption of active-learning strategies.
Results
We observed 125 science, technology, engineering, and mathematics (STEM) undergraduate courses at three University of California campuses using the Classroom Observation Protocol for Undergraduate STEM to examine active-learning strategies implemented in the classroom. Tenure-track education-focused faculty are more likely to teach with active-learning strategies compared to tenure-track research-focused faculty. Instructor and classroom characteristics that are also related to active learning include campus, discipline, and class size. The campus with initiatives and programs to support undergraduate STEM education is more likely to have instructors who adopt active-learning strategies. There is no difference in instructors in the Biological Sciences, Engineering, or Information and Computer Sciences disciplines who teach actively. However, instructors in the Physical Sciences are less likely to teach actively. Smaller class sizes also tend to have instructors who teach more actively.
Conclusions
The novel tenure-track education-focused faculty position within the University of California system represents a formal structure that results in higher adoption of active-learning strategies in undergraduate STEM education. Campus context and evolving expectations of the position (faculty rank) contribute to the symbols related to learning and teaching that correlate with differential implementation of active learning.
This case study presents a flexible and dynamic course design administered by multiple instructors simultaneously. The integration of multiple instructors allowed for knowledge exchange in blending complementary behaviors and discourse practices during class sessions. This course design could be adapted to STEM courses in higher education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.