Human beings have been credited with unparalleled capabilities for digital prehension grasping. However, grasping behaviour is widespread among tetrapods. The propensity to grasp, and the anatomical characteristics that underlie it, appear in all of the major groups of tetrapods with the possible exception of terrestrial turtles. Although some features are synapomorphic to the tetrapod clade, such as well-defined digits and digital musculature, other features, such as opposable digits and tendon configurations, appear to have evolved independently in many lineages. Here we examine the incidence, functional morphology, and evolution of grasping across four major tetrapod clades. Our review suggests that the ability to grasp with the manus and pes is considerably more widespread, and ecologically and evolutionarily important, than previously thought. The morphological bases and ecological factors that govern grasping abilities may differ among tetrapods, yet the selective forces shaping them are likely similar. We suggest that further investigation into grasping form and function within and among these clades may expose a greater role for grasping ability in the evolutionary success of many tetrapod lineages.
Frogs are characterized by a unique morphology associated with their saltatory lifestyle. Although variation in the form and function of the pelvic girdle and associated appendicular system related to specialized locomotor modes such as swimming or burrowing has been documented, the forelimbs have typically been viewed as relatively unspecialized. Yet, previous authors have noted versatility in forelimb function among arboreal frogs associated with feeding. Here we study the morphology and function of the forelimb and hand during locomotion in two species of arboreal frogs ( Litoria caerulea and Phyllomedusa bicolor ). Our data show a complex arrangement of the distal forelimb and hand musculature with some notable differences between species. Analyses of high-speed video and video fluoroscopy recordings show that forelimbs are used in alternating fashion in a diagonal sequence footfall pattern and that the position of the hand is adjusted when walking on substrates of different diameters. Electromyographic recordings show that the flexors of the hand are active during substrate contact, suggesting the use of gripping to generate a stabilizing torque. Measurements of grasping forces in vivo and during stimulation experiments show that both species, are capable of executing a so-called power grip but also indicates marked differences between species, in the magnitude of forces generated. Stimulation experiments showed an increased control of digit flexion in the more specialized of the two species, allowing it to execute a precision grip paralleled only by that seen in primates.
In lizards, distinct patterns of the tendinous structures associated with the forearm flexors have been described. In most lizards, the m. flexor digitorum longus ends in a tendinous plate with an embedded sesamoid, from which tendons run to the terminal phalanx of each digit. This structure is known as the flexor plate. In many polychrotid lizards, however, the flexor digitorum longus muscle is continuous with individual tendons running to each digit, and no complete flexor plate is present. In most geckos, the flexor plate is reduced to a tendinous plate without sesamoid. To evaluate the consequences of these differences in morphology on locomotion and grasping, we compared the use of the fore-arm and hand in lizards exhibiting three different tendon patterns (Pogona vitticeps, an agamid with a well-developed flexor plate; Gekko gecko, a gekkonid with a flexor plate, but without an embedded sesamoid; Anolis equestris, a polychrotid without flexor plate, but showing independent tendons running to each digit) while moving on different substrates. We found that the presence of a flexor plate with sesamoid bone prevents digital flexion and creates a rather stiff palmar surface in P. vitticeps. This configuration makes it impossible for P. vitticeps to grasp narrow branches and results in a strongly impaired locomotor performance on narrow substrates. Both G. gecko and A. equestris can flex the palms of their hands and their fingers more extensively, and do so when moving on narrow substrates. We suggest that the reduction of the flexor plate in both G. gecko and A. equestris allows these animals to move effectively on narrow substrates. Anat Rec, 292:842-853, 2009. V V C 2009 Wiley-Liss, Inc.Key words: flexor plate; forearm muscles; grasping hand; lizards; palmar sesamoid; tendons All limbed tetrapods have flexor tendons in the palmar surface of the manus that connect the muscles of the forearm with the digits. These tendons emerge from the superficial (m. flexor carpi ulnaris; m. flexor carpi radialis), and deeper (m. flexor digitorum longus) muscles of the forearm. Each layer (superficial and deep) of these skeletal muscles exerts its actions on the bones of the hand by means of an independent set of tendons (Davis, 1964). In lizards, however, only the m. flexor digitorum longus sends flexor tendons to the digits. This muscle flexes the digits via five strong tendons that generally
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.