Although the bankruptcy prediction models can be a stabilizing element on both macro and microeconomic levels, they are rather a domain of academic research than an instrument, widely applied in a business practice. It is especially true if the models are reflecting the conditions of countries of their origin, rather than countries of their intended uses. Besides, few of the models contain inherent flaws, including the absence of a methodical approach addressing this problem of the severely imbalanced representation of bankrupt companies in financial datasets. The article is focused on the use of oversampling with SMOTE (Synthetic Minority Oversampling Technique) algorithm under the condition of extremely imbalanced data sets of Slovak companies. While the model does not provide a single answer in many (if not most) of the situations, it still could be used for the selection of companies for which the more detailed (and expensive) analysis is not required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.