Legged robotic technologies have moved out of the lab to operate in real environments, characterized by a wide variety of unpredictable irregularities and disturbances, all this in close proximity with humans. Demonstrating the ability of current robots to move robustly and reliably in these conditions is becoming essential to prove their safe operation. Here, we report an in-depth literature review aimed at verifying the existence of common or agreed protocols and metrics to test the performance of legged system in realistic environments. We primarily focused on three types of robotic technologies, i.e., hexapods, quadrupeds and bipeds. We also included a comprehensive overview on human locomotion studies, being it often considered the gold standard for performance, and one of the most important sources of bioinspiration for legged machines. We discovered that very few papers have rigorously studied robotic locomotion under irregular terrain conditions. On the contrary, numerous studies have addressed this problem on human gait, being nonetheless of highly heterogeneous nature in terms of experimental design. This lack of agreed methodology makes it challenging for the community to properly assess, compare and predict the performance of existing legged systems in real environments. On the one hand, this work provides a library of methods, metrics and experimental protocols, with a critical analysis on the limitations of the current approaches and future promising directions. On the other hand, it demonstrates the existence of an important lack of benchmarks in the literature, and the possibility of bridging different disciplines, e.g., the human and robotic, towards the definition of standardized procedures that will boost not only the scientific development of better bioinspired solutions, but also their market uptake.
This study describes the software methodology designed for systematic benchmarking of bipedal systems through the computation of performance indicators from data collected during an experimentation stage. Under the umbrella of the European project Eurobench, we collected approximately 30 protocols with related testbeds and scoring algorithms, aiming at characterizing the performances of humanoids, exoskeletons, and/or prosthesis under different conditions. The main challenge addressed in this study concerns the standardization of the scoring process to permit a systematic benchmark of the experiments. The complexity of this process is mainly due to the lack of consistency in how to store and organize experimental data, how to define the input and output of benchmarking algorithms, and how to implement these algorithms. We propose a simple but efficient methodology for preparing scoring algorithms, to ensure reproducibility and replicability of results. This methodology mainly constrains the interface of the software and enables the engineer to develop his/her metric in his/her favorite language. Continuous integration and deployment tools are then used to verify the replicability of the software and to generate an executable instance independent of the language through dockerization. This article presents this methodology and points at all the metrics and documentation repositories designed with this policy in Eurobench. Applying this approach to other protocols and metrics would ease the reproduction, replication, and comparison of experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.