Meeting the nutritional needs of a dynamically developing global society is a major challenge. Despite the modernisation of agriculture, huge losses in the quality and quantity of crops occur each year, mainly due to weed species, which are the most important biotic limitation to agricultural production. Globally, approximately 1800 weed species cause a 31.5% reduction in plant production, which translates to USD 32 billion per year in economic losses. However, when the same herbicides are frequently applied, plants develop segetal immune mechanisms. There are currently around 380 herbicide-resistant weed biotypes worldwide. Due to the negative influence of herbicides on ecosystems and the legal regulations that limit the use of chemical crop protection products, it is necessary to develop a new method of weed control. Bioherbicides, based on living organisms or their secondary metabolites, seem to be an ideal solution. The biocontrol market is worth around EUR 550 million in Europe and EUR 1.6 billion worldwide, with an estimated 15% growth expected by 2025. Despite numerous studies that have demonstrated the effectiveness of microbial bioherbicides, only 25 mould-based bioherbicides are currently available to growers. Due to the high specificity and selectivity of biological crop protection products, as well as their low production costs and non-toxicity to the environment and human health, they would appear to be a safe alternative to chemical pesticides.
The negative impact of chemical pesticides on the environment and human health has contributed to the introduction of legal regulations that ensure the reduction in the use of agrochemicals in favor of biological products. The existing review of the literature, including our research, clearly shows that the ideal biocontrol agents are Trichoderma fungi. The production of antibiotics, lytic enzymes degrading the cell walls of plant pathogens, or inducing a defense response in plants are just some of the features supporting the wide use of these microorganisms in sustainable agriculture. It is estimated that currently about 60% of biofungicides used to eliminate fungal pathogens are produced based on Trichoderma sp. strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.