The purpose of this paper is to elucidate the roles that microbes may be playing in the rootzone of the medicinal plant Daturainoxia. We hypothesized that the microbes associated with the Datura rootzone would be significantly different than the similar surrounding fields in composition and function. We also hypothesized that rhizospheric and endophytic microbes would be associated with similar metabolic functions to the plant rootzone they inhabited. The methods employed were microbial barcoding, tests of essential oils against antibiotic resistant bacteria and other soil bacterial isolates, 16S Next Generation Sequencing (NGS) metabarcoding, and Whole Genome Shotgun (WGS) taxonomic and functional analyses. A few of the main bacterial genera of interest that were differentially abundant in the Datura root microbiome were Flavobacterium (p = 0.007), Chitinophaga (p = 0.0007), Pedobacter (p = 6 × 10−5), Bradyhizobium (p = 1 × 10−8), and Paenibacillus (p = 1.46 × 10−6). There was significant evidence that the microbes associated with the Datura rootzone had elevated function related to bacterial chalcone synthase (p = 1.49 × 10−3) and permease genes (p < 0.003). There was some evidence that microbial functions in the Datura rootzone provided precursors to important plant bioactive molecules or were beneficial to plant growth. This is important because these compounds are phyto-protective antioxidants and are precursors to many aromatic bioactive compounds that are relevant to human health. In the context of known interactions, and current results, plants and microbes influence the flavonoid biosynthetic pathways of one other, in terms of the regulation of the phenylpropanoid pathway. This is the first study to focus on the microbial ecology of the Datura rootzone. There are possible biopharmaceutical and agricultural applications of the natural interplay that was discovered during this study of the Datura inoxia rhizosphere.
The purpose of this paper is to elucidate the roles that microbes may be playing in the rootzone of the medicinal plant Datura inoxia. We hypothesized that rhizospheric and endophytic microbes would be found that were capable of performing the same secondary metabolic functions of the plant rootzone they inhabited. We also hypothesized that the microbial functions would be co-operative with and supportive to plant secondary metabolite production, for example, by providing precursors to important plant bioactive molecules. The methods employed were mi-crobial barcoding, tests of essential oils against antibiotic resistant bacteria and other soil bacterial isolates, 16S Next Generation Sequencing (NGS) metabarcoding, and Whole Genome Shotgun (WGS) taxonomic and functional. A few of the main bacterial genera of interest that were dis-covered in the Datura root microbiome were Flavobacterium, Chitinophaga, Pseudomonas, Strepto-myces, Rhizobium, and Bacillus. In the context of known interactions, and current results, plants and microbes influence the flavonoid biosynthetic pathways of one other, in terms of the regulation of the phenylpropanoid pathway. This is important because these compounds are phyto-protective antioxidants and are precursors to many aromatic bioactive compounds that are relevant to human health. There was strong evidence to support the notion that synergistic production of plant de-rived secondary metabolites by microbes occurred, as well as the ability for the compounds to enter plant cells. There are possible biopharmaceutical and agricultural applications of the natural interplay that was discovered during this study of the Datura inoxia rhizosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.