The transcriptional factors implicated in the expression of the intermediate filament protein nestin in cardiomyocytes during embryogenesis remain undefined. In the heart of 9,5-10,5 day embryonic mice, nestin staining was detected in atrial and ventricular cardiomyocytes and a subpopulation co-expressed Tbx5. At later stages of development, nestin immunoreactivity in cardiomyocytes gradually diminished and was absent in the heart of 17,5 day embryonic mice. In the heart of wild type 11,5 day embryonic mice, 54 ± 7% of the trabeculae expressed nestin and the percentage was significantly increased in the hearts of Tbx5 and Gata4 embryos. The cell cycle protein Ki67 and transcriptional coactivator Yap-1 were still prevalent in the nucleus of nestin -cardiomyocytes identified in the heart of Tbx5 and Gata4 embryonic mice. Phorbol 12,13-dibutyrate treatment of neonatal rat ventricular cardiomyocytes increased Yap-1 phosphorylation and co-administration of the p38 MAPK inhibitor SB203580 led to significant dephosphorylation. Antagonism of dephosphorylated Yap-1 signalling with verteporfin inhibited phorbol 12,13-dibutyrate/SB203580-mediated nestin expression and BrdU incorporation of neonatal cardiomyocytes. Nestin depletion with an AAV9 containing a shRNA directed against the intermediate filament protein significantly reduced the number of neonatal cardiomyocytes that re-entered the cell cycle. These findings demonstrate that Tbx5- and Gata4-dependent events negatively regulate nestin expression in cardiomyocytes during embryogenesis. By contrast, dephosphorylated Yap-1 acting via upregulation of the intermediate filament protein nestin plays a seminal role in the cell cycle re-entry of cardiomyocytes. Based on these data, an analogous role of Yap-1 may be prevalent in the heart of Tbx5 and Gata4 mice.
Congenital heart defects affect ∼2% of live births and often involve malformations of the semilunar (aortic and pulmonic) valves. We previously reported a highly penetrant GATA4 p.Gly296Ser mutation in familial, congenital atrial septal defects and pulmonic valve stenosis and showed that mice harboring the orthologous G295S disease-causing mutation display not only atrial septal defects, but also semilunar valve stenosis. Here, we aimed to characterize the role of Gata4 in semilunar valve development and stenosis using the Gata4 G295Ski/wt mouse model. GATA4 is highly expressed in developing valve endothelial and interstitial cells. Echocardiographic examination of Gata4 G295Ski/wt mice at 2 months and 1 year of age identified functional semilunar valve stenosis predominantly affecting the aortic valve with distal leaflet thickening and severe extracellular matrix (ECM) disorganization. Examination of the aortic valve at earlier postnatal timepoints demonstrated similar ECM abnormalities consistent with congenital disease. Analysis at embryonic timepoints showed a reduction in aortic valve cushion volume at embryonic day (E)13.5, predominantly affecting the non-coronary cusp (NCC). Although total cusp volume recovered by E15.5, the NCC cusp remained statistically smaller. As endothelial to mesenchymal transition (EMT)-derived cells contribute significantly to the NCC, we performed proximal outflow tract cushion explant assays and found EMT deficits in Gata4 G295Ski/wt embryos along with deficits in cell proliferation. RNA-seq analysis of E15.5 outflow tracts of mutant embryos suggested a disease state and identified changes in genes involved in ECM and cell migration as well as dysregulation of Wnt signaling. By utilizing a mouse model harboring a human disease-causing mutation, we demonstrate a novel role for GATA4 in congenital semilunar valve stenosis. .
Congenital heart disease (CHD) is the most common type of birth defect, affecting ~1% of all live births. Malformations of the cardiac outflow tract (OFT) account for ~30% of all CHD and include a range of CHDs from bicuspid aortic valve (BAV) to tetralogy of Fallot (TOF). We hypothesized that transcriptomic profiling of a mouse model of CHD would highlight disease-contributing genes implicated in congenital cardiac malformations in humans. To test this hypothesis, we utilized global transcriptional profiling differences from a mouse model of OFT malformations to prioritize damaging, de novo variants identified from exome sequencing datasets from published cohorts of CHD patients. Notch1+/−; Nos3−/− mice display a spectrum of cardiac OFT malformations ranging from BAV, semilunar valve (SLV) stenosis to TOF. Global transcriptional profiling of the E13.5 Notch1+/−; Nos3−/− mutant mouse OFTs and wildtype controls was performed by RNA sequencing (RNA-Seq). Analysis of the RNA-Seq dataset demonstrated genes belonging to the Hif1α, Tgf-β, Hippo, and Wnt signaling pathways were differentially expressed in the mutant OFT. Mouse to human comparative analysis was then performed to determine if patients with TOF and SLV stenosis display an increased burden of damaging, genetic variants in gene homologs that were dysregulated in Notch1+/−; Nos3−/− OFT. We found an enrichment of de novo variants in the TOF population among the 1,352 significantly differentially expressed genes in Notch1+/−; Nos3−/− mouse OFT but not the SLV population. This association was not significant when comparing only highly expressed genes in the murine OFT to de novo variants in the TOF population. These results suggest that transcriptomic datasets generated from the appropriate temporal, anatomic and cellular tissues from murine models of CHD may provide a novel approach for the prioritization of disease-contributing genes in patients with CHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.