Selective tooth agenesis is the most common developmental abnormality of the human dentition. To date, this abnormality has been associated only with mutations in MSX1 and PAX9 mutations, however it has recently been suggested that mutations of axis inhibition protein 2 (AXIN2) may also contribute to this complex anomaly. The protein product of this gene is a negative regulator of the Wnt-signaling pathway. We searched for AXIN2 variants in a group of patients with tooth agenesis who did not have mutations of MSX1 and PAX9. Using multi-temperature single-stranded conformational polymorphism and sequencing analysis, we identified three novel AXIN2 gene variants: c.956+16A>G, c.1060-17C>T and c.2062C>T. We also observed that individuals carrying the c.956+16G and c.2062T alleles exhibited an increased risk of tooth agenesis. The calculated odds ratio was 2.94 (95% CI 1.104-7.816; p=0.026; p corr =0.234) and 4.01 (95% CI 1.563-10.301; p=0.002; p corr =0.018), respectively. Moreover, we found that the c.2062C>T transition may change exon splice enhancer-specific binding sites of the protein splicing regulators SC35 and SF2/ASF. This alternation may negatively affect the splicing process and cellular concentration of AXIN2 protein. Our findings suggest that AXIN2 polymorphic variants may be associated with both hypodontia and oligodontia.
Tooth agenesis constitutes the most common anomalies of dental development in man. Despite this, little is known about the genetic defects responsible for this complex condition. To date, the only genes associated with the non-syndromic form of tooth agenesis are MSX1 and PAX9, which encode transcription factors that play a critical role during tooth development. This paper aims to review current literature about the molecular mechanisms responsible for selective tooth agenesis in humans.
Tooth agenesis is one of the most common dental anomalies, with a complex and not yet fully elucidated aetiology. Given the crucial role of the Wnt signalling pathway during tooth development, the purpose of this study was to determine whether nucleotide variants of genes encoding components of this signalling pathway might be associated with hypodontia and oligodontia in the Polish population. A set of 34 single nucleotide polymorphism (SNPs) in 13 WNT and WNT-related genes were analyzed in a group of 157 patients with tooth agenesis and a properly matched control group (n = 430). In addition, direct sequencing was performed to detect mutations in the MSX1, PAX9 and WNT10A genes. Both single-marker and haplotype analyses showed highly significant association between SNPs in the WNT10A gene and the risk for tooth agenesis. Moreover, nine pathogenic mutations within the coding region of the WNT10A gene were identified in 26 out of 42 (62%) tested patients. One novel heterozygous mutation was identified in the PAX9 gene. Borderline association with the risk of non-syndromic tooth agenesis was also observed for the APC, CTNNB1, DVL2 and WNT11 polymorphisms. In conclusion, nucleotide variants of genes encoding important components of the Wnt signalling pathway might influence the risk of tooth agenesis.
The aetiology of non-syndromic cleft lip with or without cleft palate (CL/P) is very complex. It has been shown that polymorphic variants of genes encoding key proteins of folate and methionine metabolism might be important maternal risk factors of having a child with this craniofacial anomaly. Therefore, in our study, mothers with CL/P children as well as control mothers were examined for prevalence of polymorphisms of genes that encode methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase and 10-formyltetrahydrofolate synthetase (MTHFD1) and reduced folate carrier 1 (RFC1). We observed that there were no statistical differences in allele and genotype frequencies of MTHFR c.677C>T, MTHFD1 c.1958G>A and RFC1 c.80G>A between mothers who had children with CL/P and control mothers. However, mothers with MTR c.2756AG or GG genotype displayed a 2.195-fold increased risk of having a child with CL/P (95% CI 1.189-4.050, p = 0.011). The mechanism by which polymorphic transition of MTR gene might increase the maternal risk of having CL/P progeny is unknown. Our observations are consistent with a significant role of the methyl cycle in the development of craniofacial structures in humans.
Tooth development is regulated through a series of reciprocal interactions between the dental epithelium and mesenchyme and requires protein products of a number of genes. It has been reported that selective tooth agenesis is associated with mutations in human MSX and PAX9 genes. Mutational analysis of the two genes was performed in 25 individuals with familial or sporadic form of permanent tooth agenesis. Single-stranded conformational polymorphism analysis revealed no mutations in the entire coding sequence of the MSX1 gene. In PAX9, a novel, heterozygous G151A transition in the sequence encoding the paired domain of the PAX9 protein was detected in a patient with agenesis of third molars, second premolars and incisors, but not in her parents, the remaining patients or 162 individuals with normal dentition. This is the first de novo mutation described in PAX9. Our results support the view that mutations in PAX9 could constitute a causative factor of oligodontia. We hypothesize that the G151A transition in PAX9 might be responsible for the sporadic form of tooth agenesis in this patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.