Angiogenesis, the process of new vessels sprouting from the existing vasculature, is a critical process during early development. However, angiogenesis rarely occurs in the adult, except in response to cyclic hormonal stimulation in the ovary and uterus, in response to injury, and in response to pathological conditions such as tumorigenesis and diabetes mellitus. Tie2 (also known as Tek) is a novel endothelium-specific receptor tyrosine kinase, which has been demonstrated to be essential for the development of the embryonic vasculature; Tie2 knockout mice die by embryonic day 10.5 with specific defects in the formation of microvessels. Tie2 is downregulated later in embryogenesis, and its function in the adult has been relatively unexplored. To gain insight into the potential functions of Tie2 in the adult vasculature, Tie2 expression was examined in adult tissues undergoing angiogenesis and in quiescent tissues. Tie2 expression was localized by immunohistochemistry to the endothelium of neovessels in rat tissues undergoing angiogenesis during hormonally stimulated follicular maturation and uterine development and in healing skin wounds. Immunoprecipitation and RNase protection assay demonstrated upregulation of Tie2 protein and mRNA in rat and mouse skin wounds, respectively. Moreover, Tie2 immunoprecipitated from skin wounds was tyrosine-phosphorylated, indicating active downstream signaling. Surprisingly, Tie2 was also expressed in the entire spectrum of the quiescent vasculature (arteries, veins, and capillaries) in a wide range of adult tissues, and Tie2 immunoprecipitated from quiescent adult tissues was also tyrosine-phosphorylated. Together, these results suggest a dual function for Tie2 in adult tissues involving both angiogenesis and vascular maintenance.
The International Society for Stem Cell Research (ISSCR) task force that developed new Guidelines for the Clinical Translation of Stem Cells discusses core principles that should guide the responsible transition of basic stem cell research into appropriate clinical applications.
Abundant data now demonstrate that the growth of new blood vessels, termed angiogenesis, plays both pathological and beneficial roles in human disease. Based on these data, a tremendous effort has been undertaken to understand the molecular mechanisms that drive blood vessel growth in adult tissues. Tie2 recently was identified as a receptor tyrosine kinase expressed principally on vascular endothelium. Disrupting Tie2 function in mice resulted in embryonic lethality with defects in embryonic vasculature, suggesting a role in blood vessel maturation and maintenance. Based on these studies, we undertook a series of studies to probe the function of Tie2 in adult vasculature that will form the focus of this chapter. Consistent with a role in blood vessel growth in adult vasculature, Tie2 was upregulated and activated in the endothelium of rat ovary and in healing rat skin wounds, both areas of active angiogenesis. Moreover, Tie2 was upregulated in the endothelium of vascular "hot spots" in human breast cancer specimens. Surprisingly, Tie2 also was expressed and activated in the endothelium of all normal rat tissues examined, suggesting a role in maintenance of adult vasculature. To determine the functional role of Tie2 in tumor vasculature, a soluble Tie2 extracellular domain (ExTek) was designed that blocked the activation of Tie2 by its activating ligand, angiopoietin 1 (Ang1). Administration of recombinant ExTek protein or an ExTek adenovirus inhibited tumor growth and metastasis in rodent tumor models, demonstrating a functional role for Tie2 in pathological angiogenesis in adult tissues. To begin to understand the endothelial signaling pathways and cellular responses that mediate Tie2 function, we identified signaling molecules that are recruited to the activated, autophosphorylated Tie2 kinase domain. Two of these molecules, SHP2 and GRB2, are part of the pathway upstream of mitogen-activated protein kinase (MAPK) activation, a pathway that may be responsible for morphogenetic effects of Tie2 on endothelial cells. Another signaling molecule, p85, is responsible for recruitment of phosphatidylinositol 3 kinase (PI3-K) and activation of the Akt/PI3-K pathway. Akt/PI3-K has emerged as a critical pathway downstream of Tie2 that is necessary for cell survival effects as well as for chemotaxis, activation of endothelial nitric oxide synthase, and perhaps for anti-inflammatory effects of Tie2 activation. Taken together, these studies and many others demonstrate that the Tie2 pathway has important functions in adult tissues, in both quiescent vasculature and during angiogenesis, and help to validate the Tie2 pathway as a therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.