Chymotryptic subfragment 1 (S-1) prepared from rabbit skeletal myosin has lost its ATPase activity upon incubation at 35 degrees C for 3 h. The loss in ATPase activity was accompanied by the perturbation of the structure of the 50K domain as indicated by a dramatic increase in the tryptic susceptibility of this domain without any change in the susceptibility of the other domains of S-1. The perturbation starts at the C-terminal region of the domain as suggested by the appearance of a 29K intermediate protein band in the tryptic peptide pattern of the heat-treated S-1. The heat-treated molecule essentially retained its actin and polyphosphate binding ability, and the actin binding was still sensitive to the presence of ATP or pyrophosphate. However, as opposed to native S-1, in heat-treated S-1 the addition of ATP does not induce an increase in tryptophan fluorescence, and, in the case of the treated species, the fluorescence of 1,N6-ethenoadenosine 5'-diphosphate added to the mixture is quenchable by acrylamide. This latter observation suggests that the binding of the adenine ring of the nucleotide has been altered following the heat treatment. The results indicate that the actin and polyphosphate binding sites of S-1 are distinct and that they are relatively independent of the adenine ring binding site.
Myosin was reacted with 2,4,6-trinitrobenzene sulphonate (TNBS) in the presence or absence of Mg-pyrophosphate. The reaction led to trinitrophenylation of lysyl residues which could be divided on the basis of the reaction into three classes: (i) two rapidly reacting lysyl residues (RLR), one residing on each head of myosin, whose rate of reaction depends on the presence of Mg-pyrophosphate; (ii) two lysyl residues which react with intermediate rate (ILR) and reside on the rod segment of myosin; and (iii) the remaining lysyl residues of myosin which react slowly with TNBS. The rate of the trinitrophenylation of RLR was followed spectrophotometrically and enzymatically, measuring an absorbance change at 345 nm, and also changes in K+ (EDTA)-, Mg2+- and Ca2+-activated ATPase activities, respectively. According to analysis of the kinetics of the reaction, Mg-pyrophosphate inhibited the rate of trinitrophenylation in both heads of myosin, not in one head only as was suggested by Miyanishi et al. (J. Biochem Tokyo 85; 1979). Myosin heads (myosin subfragment-1, S-1) were prepared by digesting myosin trinitrophenylated in the absence and presence of Mg-pyrophosphate with chymotrypsin. S-1, with trinitrophenylated RLR, was separated from non-trinitrophenylated S-1 by DEAE cellulose column chromatography. The trinitrophenylated S-1 had a high Mg2+- and a low K+(EDTA)-activated ATPase while the non-trinitrophenylated species had the usual high K+(EDTA)- and low Mg2+-ATPase activity. This results excluded the possibility suggested by Miyanishi et al., that the myosin head, which is resistant to trinitrophenylation in the presence of Mg-pyrophosphate, did not possess K+(EDTA)-activated ATPase activity. The presence of Mg-pyrophosphate during trinitrophenylation substantially affected the enzymic characteristics of the modified myosin. The myosin trinitrophenylated in the presence of Mg-pyrophosphate had a higher K+(EDTA)- and a lower Mg2+-ATPase activity. SH1 (Cys-707) also probably becomes a target of the reaction if myosin is trinitrophenylated in the presence of Mg-pyrophosphate. This is deduced from the following findings: (i) the addition of dithiothreitol after trinitrophenylation partially reversed the loss in the K+(EDTA)-ATPase activity; and (ii) the specific alkylation of the SH1 thiol by 1,5-IAEDANS prior to trinitrophenylation prevented the effect of dithiothreitol on the ATPase activity of myosin. The results indicated that Mg-pyrophosphate induced structural changes in the myosin molecule which influenced the course and possibly the target(s) of trinitrophenylation.
Periodontal inflammation was induced in rats by injection of bacterial sonic extracts isolated from Gram negative gingival pathogens: Capnocytophaga sputigena and Actinobacillus actinomycetemcomitans. The inflammatory reaction was characterized by a massive ieukocytic infiltration, granulation tissue, and abscess formation. In addition, bone resorption and primary bone formation via extracellular matrix vesicles were observed. Matrix vesicle fractions obtained from the aiveoiar bone of rats with inflammation revealed an increase of acid phosphatase activity as compared to controls. Studies of alkahne phosphalase activity in the vesicular fractions revealed no differences between experimental and control groups. The possible role of baeteriai products in alveolar bone remodehng in the light of the enzymatic alterations and morphological observations is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.