Single-walled carbon nanotube-water nanofluids were tested in a 1-5 TEMA E shell and coil heat exchanger. Cold nanofluid, flowing inside the coil, was heated by hot water flowing in the shell side. Volumetric fraction of nanoparticles, inlet temperature of nanofluid, and mass flow rate of nanofluids ranged from 0 to 0.21%, 2.3 to 23.4 °C, and 40 to 90 g/s, respectively. For a given Reynolds number, at the coil side, pure base fluid (φ = 0%) performed better than low-concentration nanofluid samples (φ = 0.035% and 0.053%) and was nearly equivalent to the nanofluid of highest concentration, φ = 0.21%. The thermal conductivity enhancement factor of the nanofluid ranged from 0 to 0.2 and to 0.45, at inlet temperatures of 30 °C and 50 °C, respectively. It is believed to work in favor of a better performance of the nanofluid samples. On the other hand, the unusual (literature-wise) low temperature of the nanofluid further amplified the enhancement of the nanofluid viscosity, with a reduction effect on the Reynolds number. Besides, other thermal resistances of the heat exchanger work toward an attenuation of the enhancement effect that nanoparticles may have in the heat exchanger performance.
KeywordsSWCNT-water nanofluids • 1-5 TEMA E • Shell and coil heat exchanger • Helically coiled tube heat exchanger • Thermal performance • Volumetric concentration effects This article has been selected for a Topical Issue of this journal on Nanoparticles and Passive-Enhancement Methods in Energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.