Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.
Neotropical coastal lagoons (NCL) are human-dominated ecosystems. Their distribution along densely populated coastal areas of developing countries makes these systems among the most threatened in the world. Here, we summarize some aspects of the causes and consequences of NCL biodiversity, their functioning, their importance to the surrounding populations, their fragility, and their responses to local and global anthropogenic impacts and the challenges that Neotropical countries face in conserving these systems. Although still scarce and geographically concentrated, a growing body of studies has shown that NCLs are physiographically diversified systems, which harbor a considerable and particular proportion of the Neotropical inland aquatic biodiversity. Despite the fact that coastal lagoons are ecotones that are intricately connected to surrounding environments, they develop mechanisms for structural and functional regulation, which confer to these systems higher productivity and carrying capacities than surrounding ecosystems. Such traits attract residential developments and subsidize local traditional populations with important economic and aesthetic ecosystem revenues such as fisheries and scenic beauty. However, the disorganized human occupation around NCLs are causing profound impacts such as eutrophication, salinization, exotic species introduction, as well as other effects, which are ultimately imposing major habitat degradations and biodiversity extirpations in NCLs. We argue that interdisciplinary conservation strategies, which integrate scientific expertise, government officials, private companies and the general public, are the most likely to overcome the geographic and economic obstacles to NCL conservation.Keywords: coastal ecosystems, ecosystem management, shallow lakes, human impacts, tropical limnology.Lagoas costeiras neotropicais: Uma apreciação sobre sua biodiversidade, funcionamento, principais ameaças e estratégias de conservação ResumoAs lagoas costeiras neotropicais (LCN) estão inseridas em um ambiente antropogênico. Sua localização em regiões costeiras densamente povoadas de países em desenvolvimento coloca estes ecossistemas entre os mais impactados do mundo. Neste trabalho, resumimos vários aspectos relacionados às causas e conseqüências da sua biodiversidade, seu funcionamento e os bens proporcionados à população do seu entorno. Sua fragilidade e as respostas a impactos humanos locais e globais, assim como os desafios para a sua conservação por países neotropicais, também são abordados. Apesar de escassos e geograficamente concentrados, um número crescente de estudos tem mostrado que as LCN são sistemas fisiograficamente diversificados, abrigando uma proporção considerável da biodiversidade dos ambientes aquáticos continentais neotropicais. Apesar de as lagoas costeiras representarem ecótonos bastante conectados ao ambiente adjacente, elas desenvolveram mecanismos próprios de regulação funcional e estrutural, conferindo uma maior produtividade e capacidade de suporte em relação...
Temporal coherence (i.e., the degree of synchronicity of a given variable among ecological units within a predefined space) has been shown for several limnological features among temperate lakes, allowing predictions about the structure and function of ecosystems. However, there is little evidence of temporal coherence among tropical aquatic systems, where the climatic variability among seasons is less pronounced. Here, we used data from long-term monitoring of physical, chemical and biological variables to test the degree of temporal coherence among 18 tropical coastal lagoons. The water temperature and chlorophyll-a concentration had the highest and lowest temporal coherence among the lagoons, respectively, whereas the salinity and water colour had intermediate temporal coherence. The regional climactic factors were the main factors responsible for the coherence patterns in the water temperature and water colour, whereas the landscape position and morphometric characteristics explained much of the variation of the salinity and water colour among the lagoons. These results indicate that both local (lagoon morphometry) and regional (precipitation, air temperature) factors regulate the physical and chemical conditions of coastal lagoons by adjusting the terrestrial and marine subsidies at a landscape-scale. On the other hand, the chlorophyll-a concentration appears to be primarily regulated by specific local conditions resulting in a weak temporal coherence among the ecosystems. We concluded that temporal coherence in tropical ecosystems is possible, at least for some environmental features, and should be evaluated for other tropical ecosystems. Our results also reinforce that aquatic ecosystems should be studied more broadly to accomplish a full understanding of their structure and function.Keywords: synchrony, temporal coherence, local factors, regional factors, shallow lakes, coastal lagoons. Coerência temporal entre lagoas costeiras tropicais: uma busca por padrões e mecanismos ResumoA coerência temporal (i.e., o nível de sincronismo de uma dada variável ecológica entre unidades ecológicas) tem sido demonstrada para uma vasta gama de variáveis limnológicas em lagos de clima temperado, permitindo que predições sobre a estrutura e o funcionamento destes ecossistemas sejam realizadas. Entretanto, há pouca evidência da coerência temporal de variáveis limnológicas entre ecossistemas aquáticos tropicais, onde a variação climática é menos pronunciada entre as estações do ano. Neste estudo, utilizamos dados de longa duração do monitoramento de variáveis físicas, químicas e biológicas para testar a ocorrência de coerência temporal entre 18 lagoas costeiras tropicais. A temperatura da água e a concentração de clorofila-a apresentaram, respectivamente, a maior e a menor coerência temporal entre as lagoas, enquanto que a salinidade e a coloração da água apresentaram padrões intermediários. Fatores climáticos regionais foram os principais fatores responsáveis pelos padrões de coerência da temperatura e coloração d...
The sub-discipline of biodiversity and ecosystem functioning (BEF) has emerged as a central topic in contemporary ecological research. However, to date no study has evaluated the prominence and publication biases in BEF research. Herein we report the results of a careful quantitative assessment of BEF research published in five core general ecology journals from 1990 to 2007 to determine the position of BEF research within ecology, identify patterns of research effort within BEF research, and discuss their probable proximal and historical causes. The relative importance of BEF publications increased exponentially during the period analyzed and was significantly greater than the average growth of ecological literature, affirming the prominence of BEF as a current paradigm in ecology. However, BEF research exhibited a strong bias toward experimental studies on terrestrial plant communities, with significantly lower effort devoted to the functional aspects of biodiversity in aquatic systems, multiple trophic level systems, and animal or microbial communities. Such trends may be explained by a combination of methodological adequacy and historic epistemological differences in ecological thinking. We suggest that BEF researchers should direct more effort toward the study of aquatic systems and animal communities, emphasize long-term and trophically complex experiments, such as those with multi-trophic microbial communities, employ larger-scale field observational studies and increase the use of integrative and theoretical studies. Many technical and analytical methodologies that are already employed in ecological research, such as stable isotopes, paleobiology, remote sensing, and model selection criteria, can facilitate these aims.Overcoming the above-mentioned shortcomings of current BEF research will greatly improve our ability to predict how biodiversity loss will affect ecosystem processes and services in natural ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.