In this paper we study a kinetic model for pedestrians, who are assumed to adapt their motion towards a desired direction while avoiding collisions with others by stepping aside. These minimal microscopic interaction rules lead to complex emergent macroscopic phenomena, such as velocity alignment in unidirectional flows and lane or stripe formation in bidirectional flows. We start by discussing collision avoidance mechanisms at the microscopic scale, then we study the corresponding Boltzmann-type kinetic description and its hydrodynamic meanfield approximation in the grazing collision limit. In the spatially homogeneous case we prove directional alignment under specific conditions on the sidestepping rules for both the collisional and the mean-field model. In the spatially inhomogeneous case we illustrate, by means of various numerical experiments, the rich dynamics that the proposed model is able to reproduce.2010 Mathematics Subject Classification. 35Q20, 35Q70, 90B20, 91F99.
In this paper we present a Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow. Hughes originally proposed a coupled nonlinear PDE system describing the evolution of a large pedestrian group trying to exit a domain as fast as possible. The original model corresponds to a system of a conservation law for the pedestrian density and an Eikonal equation to determine the weighted distance to the exit. We consider this model in presence of small diffusion and discuss the numerical analysis of the proposed Semi-Lagrangian scheme. Furthermore we illustrate the effect of small diffusion on the exit time with various numerical experiments.
In this paper we study an approximation scheme for an Hamilton-Jacobi equation of Eikonal type defined on a network. We introduce an appropriate notion of viscosity solution for this class of equations (see [12]) and we prove that an approximation scheme of semi-Lagrangian type converges to the unique solution of the problem.
In this paper, we introduce a discrete time-finite state model for pedestrian flow on a graph in the spirit of the Hughes dynamic continuum model. The pedestrians, represented by a density function, move on the graph choosing a route to minimize the instantaneous travel cost to the destination. The density is governed by a conservation law while the minimization principle is described by a graph eikonal equation. We show that the model is well posed and we implement some numerical examples to demonstrate the validity of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.